7. A braced cut in sand is shown in the following figure. The height and width of the cut are 10 m and 8 m, respectively. (1) Draw the earth pressure envelope using Peck's apparent lateral pressure diagrams. (2) Determine the strut load at levels A, B, C. the spacing between struts is 3 m. (3) Determine the maximum moment of the soldier beam. (4) Determine the maximum moment of the wale at level B. Bearing capacity equation: q=dNFFF+qN F F F +0.57BN,F_F_F Equations and Tables: K. 1-sino' K≈ 0.95-sin o' Shape factors by De Depth factors by Hansen (1970) Beer (1970) Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) Fo=1+(/XN) Fo=1+0.4(1) B F=1+(-) tan L F, =1-0.4(-) Fâ = 1+ 2 tan ø'(1 − sin ø')² D½ F₁ =1 F₁ = F₁ = (1-2 F₁ = (1-2)² 90° Table 4.2 Bearing Capacity Factors $' NC Na N₁ Κ. K o(overconsolidate) o(normally consolidated) √OCR 0 5.14 1.00 0.00 I 5.38 1.09 0.07 2 5.63 1.20 0.15 3 5.90 1.31 0.24 K. = tan² (45-%) cosa-√cos a-cos² ' Ka =COS& K₁ = cos a cosa + √cos² a-cos² ' COSC = cosa + √cos a- - cos² o' cos² a-cos² ' 10 11 12 K₁ = sin² (B+) 13 sin² ẞ sin(ẞ-8)[1+ sin('+ +♂) sin(ø' − a). sin(B-8) sin(a + B) 14 2 15 456789DER45 6.19 1.43 0.34 6.49 1.57 0.45 6.81 1.72 0.57 7.16 1.88 0.71 7.53 2.06 0.86 7.92 2.25 1.03 8.35 2.47 1.22 8.80 2.71 1.44 9.28 2.97 1.69 9.81 3.26 1.97 10.37 3.59 2.29 10.98 3.94 2.65 16589822222222222 N Na N₁ 11.63 4.34 3.06 17 12.34 4.77 3.53 13.10 5.26 4.07 13.93 5.80 4.68 20 14.83 6.40 5.39 15.82 7.07 6.20 16.88 7.82 7.13 23 18.05 8.66 8.20 24 19.32 9.60 9.44 20.72 10.66 10.88 22.25 11.85 12.54 27 23.94 13.20 14.47 25.80 14.72 16.72 27.86 16.44 19.34 30 30.14 18.40 22.40 31 32.67 20.63 25.99 (continued) Kp == sin² (B-) sin ẞ sin(ẞ+6)[1- sin('+5) sin('+α) 12 Vsin(+6) sin(a+B) Table 4.2 Bearing Capacity Factors (Continued) $' N Na N₁ φ' No N₁₂ Ny 32 35.49 23.18 30.22 42 93.71 85.38 155.55 33 38.64 26.09 35.19 43 105.11 99.02 186.54 34 42.16 29.44 41.06 44 118.37 115.31 224.64 35 46.12 33.30 48.03 45 133.88 134.88 271.76 36 50.59 37.75 56.31 46 152.10 158.51 330.35 37 55.63 42.92 66.19 47 173.64 187.21 403.67 38 61.35 48.93 78.03 48 199.26 222.31 496.01 39 67.87 55.96 92.25 49 229.93 265.51 613.16 40 75.31 64.20 109.41 50 266.89 319.07 762.89 41 83.86 73.90 130.22

Principles of Foundation Engineering (MindTap Course List)
8th Edition
ISBN:9781305081550
Author:Braja M. Das
Publisher:Braja M. Das
Chapter15: Braced Cuts
Section: Chapter Questions
Problem 15.11P
icon
Related questions
Question

I need detailed explanation solving this exercise from Foundation Engineering, step by step please.

7. A braced cut in sand is shown in the following figure. The height and width of the cut are 10
m and 8 m, respectively.
(1) Draw the earth pressure envelope using Peck's apparent lateral pressure diagrams.
(2) Determine the strut load at levels A, B, C. the spacing between struts is 3 m.
(3) Determine the maximum moment of the soldier beam.
(4) Determine the maximum moment of the wale at level B.
Bearing capacity equation: q=dNFFF+qN F F F +0.57BN,F_F_F
Equations and Tables:
K. 1-sino' K≈ 0.95-sin o'
Shape factors by De
Depth factors by Hansen (1970)
Beer (1970)
Inclination factors by Meyerhof (1963)
and Hanna and Meyerhof (1981)
Fo=1+(/XN) Fo=1+0.4(1)
B
F=1+(-) tan
L
F, =1-0.4(-)
Fâ = 1+ 2 tan ø'(1 − sin ø')² D½
F₁ =1
F₁ = F₁ = (1-2
F₁ = (1-2)²
90°
Table 4.2 Bearing Capacity Factors
$'
NC
Na
N₁
Κ.
K
o(overconsolidate)
o(normally consolidated)
√OCR
0
5.14
1.00
0.00
I
5.38
1.09
0.07
2
5.63
1.20
0.15
3
5.90
1.31
0.24
K. = tan² (45-%)
cosa-√cos a-cos² '
Ka
=COS&
K₁ = cos a
cosa + √cos² a-cos² '
COSC =
cosa + √cos a-
- cos² o'
cos² a-cos² '
10
11
12
K₁ =
sin² (B+)
13
sin² ẞ sin(ẞ-8)[1+
sin('+ +♂) sin(ø' − a).
sin(B-8) sin(a + B)
14
2
15
456789DER45
6.19
1.43
0.34
6.49
1.57
0.45
6.81
1.72
0.57
7.16
1.88
0.71
7.53
2.06
0.86
7.92
2.25
1.03
8.35
2.47
1.22
8.80
2.71
1.44
9.28
2.97
1.69
9.81
3.26
1.97
10.37
3.59
2.29
10.98
3.94
2.65
16589822222222222
N
Na
N₁
11.63
4.34
3.06
17
12.34
4.77
3.53
13.10
5.26
4.07
13.93
5.80
4.68
20
14.83
6.40
5.39
15.82
7.07
6.20
16.88
7.82
7.13
23
18.05
8.66
8.20
24
19.32
9.60
9.44
20.72
10.66
10.88
22.25
11.85
12.54
27
23.94
13.20
14.47
25.80
14.72
16.72
27.86
16.44
19.34
30
30.14
18.40
22.40
31
32.67
20.63
25.99
(continued)
Kp
==
sin² (B-)
sin ẞ sin(ẞ+6)[1-
sin('+5) sin('+α) 12
Vsin(+6) sin(a+B)
Table 4.2 Bearing Capacity Factors (Continued)
$'
N
Na
N₁
φ'
No
N₁₂
Ny
32
35.49
23.18
30.22
42
93.71
85.38
155.55
33
38.64
26.09
35.19
43
105.11
99.02
186.54
34
42.16
29.44
41.06
44
118.37
115.31
224.64
35
46.12
33.30
48.03
45
133.88
134.88
271.76
36
50.59
37.75
56.31
46
152.10
158.51
330.35
37
55.63
42.92
66.19
47
173.64
187.21
403.67
38
61.35
48.93
78.03
48
199.26
222.31
496.01
39
67.87
55.96
92.25
49
229.93
265.51
613.16
40
75.31
64.20
109.41
50
266.89
319.07
762.89
41
83.86
73.90
130.22
Transcribed Image Text:7. A braced cut in sand is shown in the following figure. The height and width of the cut are 10 m and 8 m, respectively. (1) Draw the earth pressure envelope using Peck's apparent lateral pressure diagrams. (2) Determine the strut load at levels A, B, C. the spacing between struts is 3 m. (3) Determine the maximum moment of the soldier beam. (4) Determine the maximum moment of the wale at level B. Bearing capacity equation: q=dNFFF+qN F F F +0.57BN,F_F_F Equations and Tables: K. 1-sino' K≈ 0.95-sin o' Shape factors by De Depth factors by Hansen (1970) Beer (1970) Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) Fo=1+(/XN) Fo=1+0.4(1) B F=1+(-) tan L F, =1-0.4(-) Fâ = 1+ 2 tan ø'(1 − sin ø')² D½ F₁ =1 F₁ = F₁ = (1-2 F₁ = (1-2)² 90° Table 4.2 Bearing Capacity Factors $' NC Na N₁ Κ. K o(overconsolidate) o(normally consolidated) √OCR 0 5.14 1.00 0.00 I 5.38 1.09 0.07 2 5.63 1.20 0.15 3 5.90 1.31 0.24 K. = tan² (45-%) cosa-√cos a-cos² ' Ka =COS& K₁ = cos a cosa + √cos² a-cos² ' COSC = cosa + √cos a- - cos² o' cos² a-cos² ' 10 11 12 K₁ = sin² (B+) 13 sin² ẞ sin(ẞ-8)[1+ sin('+ +♂) sin(ø' − a). sin(B-8) sin(a + B) 14 2 15 456789DER45 6.19 1.43 0.34 6.49 1.57 0.45 6.81 1.72 0.57 7.16 1.88 0.71 7.53 2.06 0.86 7.92 2.25 1.03 8.35 2.47 1.22 8.80 2.71 1.44 9.28 2.97 1.69 9.81 3.26 1.97 10.37 3.59 2.29 10.98 3.94 2.65 16589822222222222 N Na N₁ 11.63 4.34 3.06 17 12.34 4.77 3.53 13.10 5.26 4.07 13.93 5.80 4.68 20 14.83 6.40 5.39 15.82 7.07 6.20 16.88 7.82 7.13 23 18.05 8.66 8.20 24 19.32 9.60 9.44 20.72 10.66 10.88 22.25 11.85 12.54 27 23.94 13.20 14.47 25.80 14.72 16.72 27.86 16.44 19.34 30 30.14 18.40 22.40 31 32.67 20.63 25.99 (continued) Kp == sin² (B-) sin ẞ sin(ẞ+6)[1- sin('+5) sin('+α) 12 Vsin(+6) sin(a+B) Table 4.2 Bearing Capacity Factors (Continued) $' N Na N₁ φ' No N₁₂ Ny 32 35.49 23.18 30.22 42 93.71 85.38 155.55 33 38.64 26.09 35.19 43 105.11 99.02 186.54 34 42.16 29.44 41.06 44 118.37 115.31 224.64 35 46.12 33.30 48.03 45 133.88 134.88 271.76 36 50.59 37.75 56.31 46 152.10 158.51 330.35 37 55.63 42.92 66.19 47 173.64 187.21 403.67 38 61.35 48.93 78.03 48 199.26 222.31 496.01 39 67.87 55.96 92.25 49 229.93 265.51 613.16 40 75.31 64.20 109.41 50 266.89 319.07 762.89 41 83.86 73.90 130.22
Expert Solution
steps

Step by step

Solved in 2 steps with 7 images

Blurred answer
Similar questions
Recommended textbooks for you
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap…
Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Principles of Geotechnical Engineering (MindTap C…
Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning