Design an RC pavilion for bicycles A. Structural information (the details are modified from a structure that you may see every day in the university!): A pavilion roof slab of thickness = 20 cm is supported by continuous cantilever beams supported by columns, as shown in Figure 1. Assume the typical bay width (distance between the centerlines of two columns) is 6 m and the length of the pavilion is 10 m. The beam and column sizes are to be designed. B. Design Loads: Dead loads: Only the self-weight of the structure (Assume unit weight = 2400 kg/m³). Live load: flat roof= 1 kPa (100 kg/m² as per C. Tasks TMF). (1) Estimate maximum dead (D) and live (L) loads acting on the continuous beam, of the pavilion, as shown in the figure below. (estimate the beam size using any reasonable method, you may also try to use varying cross-section). (2) Draw the shear force and moment diagrams. (3) Design and draw the flexural and shear reinforcement for the beam. Note: (1) Feel free to use any structural analysis or design software! Just professionally present your design report. (2) The original structure does not have beams. It is a flat-slab system, of which the design is more challenging! Beam 10 m Colum Figure 1. The RC pavilion for bicycles.
Design an RC pavilion for bicycles A. Structural information (the details are modified from a structure that you may see every day in the university!): A pavilion roof slab of thickness = 20 cm is supported by continuous cantilever beams supported by columns, as shown in Figure 1. Assume the typical bay width (distance between the centerlines of two columns) is 6 m and the length of the pavilion is 10 m. The beam and column sizes are to be designed. B. Design Loads: Dead loads: Only the self-weight of the structure (Assume unit weight = 2400 kg/m³). Live load: flat roof= 1 kPa (100 kg/m² as per C. Tasks TMF). (1) Estimate maximum dead (D) and live (L) loads acting on the continuous beam, of the pavilion, as shown in the figure below. (estimate the beam size using any reasonable method, you may also try to use varying cross-section). (2) Draw the shear force and moment diagrams. (3) Design and draw the flexural and shear reinforcement for the beam. Note: (1) Feel free to use any structural analysis or design software! Just professionally present your design report. (2) The original structure does not have beams. It is a flat-slab system, of which the design is more challenging! Beam 10 m Colum Figure 1. The RC pavilion for bicycles.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
I need detailed help solving this exercise from Reinforced Concrete.
Step by step, please.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning