Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.21P
Consider a continuous foundation of width B = 1.4 m on a sand deposit with c′ = 0, ф′ = 38°, and γ = 17.5 kN/m3. The foundation is subjected to an eccentrically inclined load (see Figure 6.33). Given: load eccentricity e = 0.15 m, Df = 1 m, and load inclination β = 18°. Estimate the failure load Qu(ei) per unit length of the foundation
- a. for a partially compensated type of loading [Eq. (6.89)]
- b. for a reinforced type of loading [Eq. (6.90)]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1. A column foundation (Figure below) is 3 m × 2 m in plan. The load on the column,
including the weight of the foundation is 4500 kN. Determin the average vertical stress increase 4
m beneath the corner of the foundation in the soil layer due to the foundation loading by:
a) Boussinesq equations
b) 2:1 method
Given: Df = 1.5 m, Ø'= 25°, c'= 70 kN/m².
1.5 m 1 m
3m x 2m
y = 17 kN/m³
Water level
Ysat 19.5 kN/m³
An eccentrically loaded continuous foundation is shown in Figure P4.11. Determine the ultimate load Qu per unit length that the foundation can carry. Use the reduction factor method [Eq. (4.63)].
Refer to Figure 5.2 and consider a rectangular foundation. Given: B = 1.5 m, L = 2.5 m, Df = 1.2 m, H = 0.9 m, Φ' = 40º, c' = 0, and γ = 17 kN/m3. Using a factor of safety of 3, determine the gross allowable load the foundation can carry. Use Eq. (5.3).
Chapter 6 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 6 - For the following cases, determine the allowable...Ch. 6 - A 5.0 ft wide square footing is placed at 3.0 ft...Ch. 6 - Prob. 6.3PCh. 6 - Redo Problem 6.2 using the general bearing...Ch. 6 - The applied load on a shallow square foundation...Ch. 6 - A 2.0 m wide continuous foundation carries a wall...Ch. 6 - Determine the maximum column load that can be...Ch. 6 - A 2.0 m wide strip foundation is placed in sand at...Ch. 6 - A column foundation (Figure P6.9) is 3 m × 2 m in...Ch. 6 - For the design of a shallow foundation, given the...
Ch. 6 - An eccentrically loaded foundation is shown in...Ch. 6 - Prob. 6.12PCh. 6 - For an eccentrically loaded continuous foundation...Ch. 6 - A 2 m 3 m spread footing placed at a depth of 2 m...Ch. 6 - Prob. 6.15PCh. 6 - A tall cylindrical silo carrying flour is to be...Ch. 6 - A 2.0 m 2.0 m square pad footing will be placed...Ch. 6 - An eccentrically loaded continuous foundation is...Ch. 6 - A square foundation is shown in Figure P6.19. Use...Ch. 6 - The shallow foundation shown in Figure 6.25...Ch. 6 - Consider a continuous foundation of width B = 1.4...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 7.14 Refer to Figure 7.15. For a foundation on a layer of sand, given: B = 5 ft, L = 10 ft, d = 5 ft, B = 26.6°, e = 0.5 ft, and & = 10°. The Pressuremeter testing at the site pro- duced a mean Pressuremeter curve for which the pam) versus AR/R, points are as follow. AR/R. (1) P,(m) (lb/in.?) (2) 0.002 7.2 0.004 24.2 0.008 32.6 0.012 42.4 0.024 68.9 0.05 126.1 0.08 177.65 0.1 210.5 0.2 369.6 What should be the magnitude of Q, for a settlement (center) of 1 in.? Foundation BxL В Figure 7.15 Definition of parameters-B,arrow_forwardA continuous foundation with a width of 1 m is located on a slope made of clay soil. Refer to Figure 5.19 and let Df = 1 m, H = 4 m, b = 2 m, γ = 16.8 kN/m3, c = cu = 68 kN/m2, Φ= 0, and β = 60°.a. Determine the allowable bearing capacity of the foundation. Let FS = 3.b. Plot a graph of the ultimate bearing capacity qu if b is changed from 0 to 6 m.arrow_forwardA continuous foundation, supported by sand, has a width of 2 m and the depth of foundation is 1.5m. The known soil characteristics are as follows: ϕ’ = 40°, c’ = 0, and γ = 16.5 kN/m³. If the loadeccentricity is 0.2 m, determine the ultimate load per unit length of the foundation.(Ans: ???? =5,260??)arrow_forward
- 3decimal places on final answerarrow_forwardA continuous foundation is shown in Figure 6.24. If the load eccentricity is 0.2 m, determine the ultimate load, Qu, per unit length of the foundation. Use Meyerhof’s effective area method. Solve this using attached equationarrow_forwardA long foundation 0.6 m wide carries a line load of 100 kN/m. Calculate the vertical stressi ncrease at a point P, the coordinates of which are x = 2.5 m, and z = 1.5m, where the x-coordinate is normal to the line load from the central line of the footing. a. 3.05 kPa b. 1.69 kPa c. 4.08 kPa d. 5.12 kPa) e. 2.55 kPaarrow_forward
- H.W 2.pdf > H.Q 6 A flexible foundation measuring 1.5 m x 3 m is supported by a saturated clay. Given: Dr = 1.2 m, H = 3 m, Es (clay)= 600 kN/m2, and qo = 150 kN/m?. Determine the average elastic settlement of the foundation. H.O 7 Figure 7.3 shows a foundation of 10 ft x 6.25 ft resting on a sand deposit. The net load per unit area at the level of the foundation, qo, is 3000 Ib/ft?. For the sand, u, = 0.3, Es = 3200 Ib/in?, Df = 2.5 ft, and H = 32 ft. Assume that the foundation is rigid and determine the elastic settlement the foundation would undergo. H.O 8 Determine the net ultimate bearing capacity of mat foundations with the following characteristics: c, = 2500 Ib/ft, = 0, B = 20 ft, L = 30 ft, D, = 6.2 ft Foundation Engineering I H.W 2 H.O 9 A 20-m-long concrete pile is shown in Figure below. Estimate the ultimate point load Q, by a. Meyerhof's method b. Coyle and Castello's method Concrete pile 460 mm x 460 mm Loose sand 20m y I86 ANi Dee s H.O 10 A concrete pile 20 m long…arrow_forwardplease solve th problem clearlyarrow_forwardS1arrow_forward
- Problem 2: A square foundation is 1.5 m by 1.5 m in plan with other characteristics shown in the figure. The soil supporting the foundation has a friction angle ø = 20° and c = 15.2 kN/m?. The unit weight of the soil is 17.8 kN/m³. Determine the allowable gross load on the foundation with a factor of safety of 4. Use general shear failure with Nc = 17.69 ; Nq = 7.44 ; Ny = 3.64 %3D %3D %3D Qall Y = 17.8 kN/m3 e = 0.60 Gs = 2.65 D;= 1.0 m GWT D = 0.4 marrow_forwardFor the embedded strip footing (infinitely long in the out-of-plane direction) shown below, the maximum vertical pressure that the soil can bear before failure is 100 kPa (i.e., qmax should not exceed 100 kPa). What is the maximum overall eccentricity of the foundation in mm before failure? (answer tolerance = 2%). Consider γconcrete = 25 kN/m3, γsoil = 18 kN/m3 and assume that the width of the embedded column is negligible, and the entire top of the foundation is covered with soil. Hint: for a strip footing, the calculations should be conducted assuming a 1-m long footing in the out-of-plane direction.arrow_forwardQuestion attachedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Types of Foundation in building construction in detail - Civil Engineering Videos; Author: Civil Engineers;https://www.youtube.com/watch?v=7sl4KuM4UIE;License: Standard YouTube License, CC-BY
Types of Foundation || Foundation Engineering; Author: Civil Engineering;https://www.youtube.com/watch?v=AFLuAKGhanw;License: Standard Youtube License