Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.7P
Determine the maximum column load that can be applied on a 1.5 m × 1.5 m square foundation placed at a depth of 1.0 m within a soil, where γ = 19.0 kN/m3, c′ = 10 kN/m2, and ф′ = 24°. Allow a factor of safety of 3.0.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the maximum column load that can be applied on a 1.5 m × 1.5 m square foundation placed at a depth of 1.0 m within a soil, where γ = 19.0 kN/m, c' = 10 kN/m2, and ' 24°. Allow a factor of safety of 3
Please solve this problem with step by step solutions and clear calculations so I can understand the theory and concept, Thank you
Prob. 1) A shallow foundation shown below, with e, = 0.34 m and eB= 0.28 m. Water level
is located at a depth of 0.5 m below the ground surface. Determine the allowable
load, Q, with FS = 3.
Sandy clay
Y =18 kN/m³
Y sat =20 kN/m3
c'= 20 kN/m?
0,9 m
1.5 m x 2.0 m
O'= 25°
keg = 0.28 m
2.0 m
e, p.34m
1.5m
Prob. 2) An embankment load on a silty clay soil layer as shown below. Determine the
stress increase under the embankment at points A and B that are loaded at a depth
of 6 m below the ground surface.
5 m
1H:2V
1H:2V
1H:1V
8 m
Y=18 kN/m
Y=18 kN/m
В
A
Prob. 3): A circular shallow foundation has been constructed at depth Dr of 2 m. The gross
allowable load with FS= 3 is 600 kN. The soil properties given as following: y= 17 kN/m',
Ysat.= 21 kN/m', c'= 0 and o'= 20°. The water table located at the ground surface. Use the
general bearing capacity equation to determine the size of the foundation.
Chapter 6 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 6 - For the following cases, determine the allowable...Ch. 6 - A 5.0 ft wide square footing is placed at 3.0 ft...Ch. 6 - Prob. 6.3PCh. 6 - Redo Problem 6.2 using the general bearing...Ch. 6 - The applied load on a shallow square foundation...Ch. 6 - A 2.0 m wide continuous foundation carries a wall...Ch. 6 - Determine the maximum column load that can be...Ch. 6 - A 2.0 m wide strip foundation is placed in sand at...Ch. 6 - A column foundation (Figure P6.9) is 3 m × 2 m in...Ch. 6 - For the design of a shallow foundation, given the...
Ch. 6 - An eccentrically loaded foundation is shown in...Ch. 6 - Prob. 6.12PCh. 6 - For an eccentrically loaded continuous foundation...Ch. 6 - A 2 m 3 m spread footing placed at a depth of 2 m...Ch. 6 - Prob. 6.15PCh. 6 - A tall cylindrical silo carrying flour is to be...Ch. 6 - A 2.0 m 2.0 m square pad footing will be placed...Ch. 6 - An eccentrically loaded continuous foundation is...Ch. 6 - A square foundation is shown in Figure P6.19. Use...Ch. 6 - The shallow foundation shown in Figure 6.25...Ch. 6 - Consider a continuous foundation of width B = 1.4...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Use Terzaghi's equation and Terzaghi's Tablearrow_forwardPlease allow for all stepsarrow_forwardQ2/A (2m x 4 m) rectangular flexible foundation is placed above the ground surface for two layers of clay, for each layer 10 m thick. The modulus of Elasticity (E) of the upper layer is 10 MN/m² and that of the lower layer is 20 MN/ m².The Poisson ratio is (us = 0.5) for the two layers and the column load is 70 kN. Determine the immediate settlement at the corner of the foundation using Elastic theory method? ==arrow_forward
- Problem 6: A 1.5m square foundation was constructed at a depth of lm. The y =19.0 kN/m², c' = 10 kN/m² and o' = 24° deg and a FOS of 3.0. Find the maximum column load that can be applied.arrow_forwardThe applied load on a shallow square foundation makes an angle of 15° with the vertical. Given: B= 1.83 m, D;= 0.91 m, 7 = 18.08 kN/m³, ' = 25°, and d' = 23.96 kN/m?. Use FS= 4 and determine the gross allowable (vertical component) load. Use Eq. (16.9).arrow_forwardQuestion attachedarrow_forward
- H.Q 1 Consider a rectangular foundation. Given: B = 1.5 m, L = 2.5 m, Df= 1.2 m, H =0.9 m, o' = 40°, c' = 0, and y= 17 kN/m3. Using a factor of safety of 3, determine the gross allowable load the foundation can carry. Use Meyerhof equation.arrow_forwardA square foundation is placed at a depth of 1.5 m within a sandy clay where c'=14k/m2 , phi'=23 and y=18 kN/m3 to carry a column load of 950 kN. Determine the width of the foundation that can be allowed on the foundation with a factor of safety of 3 and use the width value you have found to calculate the allowable bearing capacity(assume general shear failure and use gross values for the Terzaghi Bearing Capacity formulation for the given foundation type). If you don't write down the required equation to find the width of the foundation you cannot get credit from this question. Use the table given to you in the figure.arrow_forwardUse Terzaghi equation and Terzaghi table.arrow_forward
- A column foundation is 3 m × 2 m in plan. Given: Dƒ = 1.5 m, þ' = 30°, c′ = 80 kN/m². Using the general bearing capacity equation (CFEM see class slides from March 17 similar to Example 1 and 2 but with an added capacity term related to cohesion) and 0.5, determine the factored bearing capacity of the foundation (i.e. – use Þ). Use Yw = 9.81 kN/m³. For simplicity, read the values of Nc, Ną, and Ny directly from the table on page 26 of the lecture slides use the highlighted columns. Also, determine the maximum factored load for the column. - 1.5 m ↑ 1 m 3m x 2m - y = 17 kN/m³ Groundwater level Ysat = 19.5 kN/m³ =arrow_forwardPlease solve this question. Q. No. 1: A foundation 4x4 m is located at a depth of 1 m in a layer of saturated clay 13 m thick. Characteristic Parameters for the clay are cu=100 kN/m2, u=0, c'=0, '=32o, Cc=0.36, eo=0.784, NCC, sat=21 kN/m3. Determine the design load of the foundation to ensure (a) a factor of safety with respect to shear failure of 3 using the traditional method, (b) consolidation settlement does not exceed 30 mm.arrow_forwardQ6. A column foundation (Figure below) is 3 m X 2 m in plan. Given: De = 1.5 m, o = 25°, c= 70 kN/m . Terzaghi's equation and assume general shear failure in soil and FS = 3, determine the net alowable koad. y = 17 kN/m 1.5 m 3 m x 2 m Yat = 19.5 kN/m Groundwater levelarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Types of Foundation in building construction in detail - Civil Engineering Videos; Author: Civil Engineers;https://www.youtube.com/watch?v=7sl4KuM4UIE;License: Standard YouTube License, CC-BY
Types of Foundation || Foundation Engineering; Author: Civil Engineering;https://www.youtube.com/watch?v=AFLuAKGhanw;License: Standard Youtube License