5. How would you modify your design of a cantilever retaining wall if the factor of safety against overturning and/or sliding does not meet the requirement of regulations or common practice? shown in Bearing capacity equation: q=CNFFF+d'N F F F +0.57BN,F, FF, Shape factors by De Depth factors by Hansen (1970) Inclination factors by Meyerhof (1963) Beer (1970) Fo=1+(무XX) and Hanna and Meyerhof (1981) F =1+0.4(4) F₁ = F₂ = (1-2 90° LN Fo1 + stand =1+ For =1+2 tan o'(1-sino)2DF, = (1 F₁ = (1-2)² B F₁ =1 F,=1-0.4(+) Equations and Tables: K1-sino' K 0.95-sin o' Table 4.2 Bearing Capacity Factors N Na N₁ N Na N K o(overconsolidate) Ko(normally consolidated) NOCR 0 5.14 1.00 0.00 16 I 5.38 1.09 0.07 17 2 5.63 1.20 0.15 18 3 5.90 1.31 0.24 19 K₁ = tan² (45-%) 4 6.19 1.43 0.34 20 5 6.49 1.57 0.45 21 6 6.81 1.72 0.57 7 7.16 1.88 0.71 23 COSC – Ka =cosa -√cos² α- cosa + √cos² α- a-cos'' cosa + √cos² a-cos² o' 8 7.53 2.06 0.86 24 K, =COS& 9 7.92 2.25 1.03 a-cos² ' COSC – -√cos² α- cos² a-cos² ' 10 8.35 2.47 1.22 11 8.80 2.71 1.44 12 9.28 2.97 1.69 K= sin² (ẞ+) 13 sin² ß sin(ẞ-8)[1+ sin('+5) sin('-α)² sin(B-) sin(a+B) 14 15 345 9.81 3.26 1.97 10.37 3.59 2.29 SERDAR222222222 11.63 4.34 3.06 12.34 4.77 3.53 13.10 5.26 4.07 13.93 5.80 4.68 14.83 6.40 5.39 15.82 7.07 6.20 16.88 7.82 7.13 18.05 8.66 8.20 19.32 9.60 9.44 25 20.72 10.66 10.88 26 22.25 11.85 12.54 27 23.94 13.20 14.47 28 25.80 14.72 16.72 29 27.86 16.44 19.34 30 30.14 18.40 22.40 10.98 3.94 2.65 31 32.67 20.63 25.99 (continued) K₁ sin² (B-) Table 4.2 Bearing Capacity Factors (Continued) sin² ß sin(ẞ+6)[1– sin('+6) sin('+α) ₁₂ Vsin(+6) sin(a + ẞ) $' No Na N₁, φ' No N₁ Ny 32 35.49 23.18 30.22 42 93.71 85.38 155.55 33 38.64 26.09 35.19 43 105.11 99.02 186.54 34 42.16 29.44 41.06 44 118.37 115.31 224.64 35 46.12 33.30 48.03 45 133.88 134.88 271.76 36 50.59 37.75 56.31 46 152.10 158.51 330.35 37 55.63 42.92 66.19 47 173.64 187.21 403.67 38 61.35 48.93 78.03 48 199.26 222.31 496.01 39 67.87 55.96 92.25 49 229.93 265.51 613.16 40 75.31 64:20 109.41 50 266.89 319.07 762.89 41 83.86 73.90 130.22

Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Braja M. Das, Nagaratnam Sivakugan
Chapter15: Retaining Walls, Braced Cuts, And Sheet Pile Walls
Section: Chapter Questions
Problem 15.12P
icon
Related questions
Question

I need detailed explanation solving this exercise from Foundation Engineering, step by step please.

5.
How would you modify your design of a cantilever retaining wall if the factor of
safety against overturning and/or sliding does not meet the requirement of regulations or
common practice?
shown in
Bearing capacity equation: q=CNFFF+d'N F F F +0.57BN,F, FF,
Shape factors by De
Depth factors by Hansen (1970)
Inclination factors by Meyerhof (1963)
Beer (1970)
Fo=1+(무XX)
and Hanna and Meyerhof (1981)
F =1+0.4(4)
F₁ = F₂ = (1-2
90°
LN
Fo1 + stand
=1+
For =1+2 tan o'(1-sino)2DF, = (1
F₁ = (1-2)²
B
F₁ =1
F,=1-0.4(+)
Equations and Tables:
K1-sino' K 0.95-sin o'
Table 4.2 Bearing Capacity Factors
N
Na
N₁
N
Na
N
K
o(overconsolidate)
Ko(normally consolidated)
NOCR
0
5.14
1.00
0.00
16
I
5.38
1.09
0.07
17
2
5.63
1.20
0.15
18
3
5.90
1.31
0.24
19
K₁ = tan² (45-%)
4
6.19
1.43
0.34
20
5
6.49
1.57
0.45
21
6
6.81
1.72
0.57
7
7.16
1.88
0.71
23
COSC –
Ka
=cosa
-√cos² α-
cosa + √cos² α-
a-cos''
cosa + √cos² a-cos² o'
8
7.53
2.06
0.86
24
K,
=COS&
9
7.92
2.25
1.03
a-cos² '
COSC –
-√cos² α-
cos² a-cos² '
10
8.35
2.47
1.22
11
8.80
2.71
1.44
12
9.28
2.97
1.69
K=
sin² (ẞ+)
13
sin² ß sin(ẞ-8)[1+
sin('+5) sin('-α)²
sin(B-) sin(a+B)
14
15
345
9.81
3.26
1.97
10.37
3.59
2.29
SERDAR222222222
11.63
4.34
3.06
12.34
4.77
3.53
13.10
5.26
4.07
13.93
5.80
4.68
14.83
6.40
5.39
15.82
7.07
6.20
16.88
7.82
7.13
18.05
8.66
8.20
19.32
9.60
9.44
25
20.72
10.66
10.88
26
22.25
11.85
12.54
27
23.94
13.20
14.47
28
25.80
14.72
16.72
29
27.86
16.44
19.34
30
30.14
18.40
22.40
10.98
3.94
2.65
31
32.67
20.63
25.99
(continued)
K₁
sin² (B-)
Table 4.2 Bearing Capacity Factors (Continued)
sin² ß sin(ẞ+6)[1–
sin('+6) sin('+α) ₁₂
Vsin(+6) sin(a + ẞ)
$'
No
Na
N₁,
φ'
No
N₁
Ny
32
35.49
23.18
30.22
42
93.71
85.38
155.55
33
38.64
26.09
35.19
43
105.11
99.02
186.54
34
42.16
29.44
41.06
44
118.37
115.31
224.64
35
46.12
33.30
48.03
45
133.88
134.88
271.76
36
50.59
37.75
56.31
46
152.10
158.51
330.35
37
55.63
42.92
66.19
47
173.64
187.21
403.67
38
61.35
48.93
78.03
48
199.26
222.31
496.01
39
67.87
55.96
92.25
49
229.93
265.51
613.16
40
75.31
64:20
109.41
50
266.89
319.07
762.89
41
83.86
73.90
130.22
Transcribed Image Text:5. How would you modify your design of a cantilever retaining wall if the factor of safety against overturning and/or sliding does not meet the requirement of regulations or common practice? shown in Bearing capacity equation: q=CNFFF+d'N F F F +0.57BN,F, FF, Shape factors by De Depth factors by Hansen (1970) Inclination factors by Meyerhof (1963) Beer (1970) Fo=1+(무XX) and Hanna and Meyerhof (1981) F =1+0.4(4) F₁ = F₂ = (1-2 90° LN Fo1 + stand =1+ For =1+2 tan o'(1-sino)2DF, = (1 F₁ = (1-2)² B F₁ =1 F,=1-0.4(+) Equations and Tables: K1-sino' K 0.95-sin o' Table 4.2 Bearing Capacity Factors N Na N₁ N Na N K o(overconsolidate) Ko(normally consolidated) NOCR 0 5.14 1.00 0.00 16 I 5.38 1.09 0.07 17 2 5.63 1.20 0.15 18 3 5.90 1.31 0.24 19 K₁ = tan² (45-%) 4 6.19 1.43 0.34 20 5 6.49 1.57 0.45 21 6 6.81 1.72 0.57 7 7.16 1.88 0.71 23 COSC – Ka =cosa -√cos² α- cosa + √cos² α- a-cos'' cosa + √cos² a-cos² o' 8 7.53 2.06 0.86 24 K, =COS& 9 7.92 2.25 1.03 a-cos² ' COSC – -√cos² α- cos² a-cos² ' 10 8.35 2.47 1.22 11 8.80 2.71 1.44 12 9.28 2.97 1.69 K= sin² (ẞ+) 13 sin² ß sin(ẞ-8)[1+ sin('+5) sin('-α)² sin(B-) sin(a+B) 14 15 345 9.81 3.26 1.97 10.37 3.59 2.29 SERDAR222222222 11.63 4.34 3.06 12.34 4.77 3.53 13.10 5.26 4.07 13.93 5.80 4.68 14.83 6.40 5.39 15.82 7.07 6.20 16.88 7.82 7.13 18.05 8.66 8.20 19.32 9.60 9.44 25 20.72 10.66 10.88 26 22.25 11.85 12.54 27 23.94 13.20 14.47 28 25.80 14.72 16.72 29 27.86 16.44 19.34 30 30.14 18.40 22.40 10.98 3.94 2.65 31 32.67 20.63 25.99 (continued) K₁ sin² (B-) Table 4.2 Bearing Capacity Factors (Continued) sin² ß sin(ẞ+6)[1– sin('+6) sin('+α) ₁₂ Vsin(+6) sin(a + ẞ) $' No Na N₁, φ' No N₁ Ny 32 35.49 23.18 30.22 42 93.71 85.38 155.55 33 38.64 26.09 35.19 43 105.11 99.02 186.54 34 42.16 29.44 41.06 44 118.37 115.31 224.64 35 46.12 33.30 48.03 45 133.88 134.88 271.76 36 50.59 37.75 56.31 46 152.10 158.51 330.35 37 55.63 42.92 66.19 47 173.64 187.21 403.67 38 61.35 48.93 78.03 48 199.26 222.31 496.01 39 67.87 55.96 92.25 49 229.93 265.51 613.16 40 75.31 64:20 109.41 50 266.89 319.07 762.89 41 83.86 73.90 130.22
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Fundamentals of Geotechnical Engineering (MindTap…
Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Principles of Geotechnical Engineering (MindTap C…
Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning