Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 16.7P
A column foundation (Figure 16.23) is 3 m × 2 m in plan. Given: Df = 1.5 m,
FIG. 16.23
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A column foundation (Figure P4.5) is 3 m x 2 m in plan. Given: Df = 1.5 m, Φ' = 25°, c' = 70 kN/m2. Using Eq. (4.26) and FS = 3, determine the net allowable load [see Eq. (4.22)] the foundation could carry.
A square foundation is shown in Figure P4.12. Use FS = 6, and determine the size of the foundation. Use Prakash and Saran theory [Eq. (4.55)].
Q 12.9
Chapter 16 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 16 - Prob. 16.1PCh. 16 - A 2.0 m wide continuous foundation carries a wall...Ch. 16 - Determine the maximum column load that can be...Ch. 16 - A 2.0 m wide strip foundation is placed in sand at...Ch. 16 - A square column foundation has to carry a gross...Ch. 16 - The applied load on a shallow square foundation...Ch. 16 - A column foundation (Figure 16.23) is 3 m 2 m in...Ch. 16 - Prob. 16.8PCh. 16 - A 2 m 3 m spread foundation placed at a depth of...Ch. 16 - An eccentrically loaded foundation is shown in...
Ch. 16 - For an eccentrically loaded continuous foundation...Ch. 16 - The shallow foundation shown in Figure 16.12...Ch. 16 - A mat foundation measuring 14 m 9 m has to be...Ch. 16 - Repeat Problem 16.13 with the following: Mat...Ch. 16 - Prob. 16.15PCh. 16 - For the mat in Problem 16.15, what will be the...Ch. 16 - Prob. 16.17CTPCh. 16 - Prob. 16.18CTPCh. 16 - A 2.0 m 2.0 m square pad footing will be placed...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6.9 A column foundation (Figure P6.9) is 3 m × 2 m in plan. Given: D = 1.5 m, þ' = 25°, c' = 70 kN/m². Using Eq. (6.28) and FS = 3, determine the net allowable load [see Eq. (6.24)] the foundation could carry. 1.5 m 1 m FIGURE P6.9 3m x 2 m y = 17 kN/m³ Groundwater level Ysat = 19.5 kN/m³arrow_forwardRefer to Figure 5.2 and consider a rectangular foundation. Given: B = 1.5 m, L = 2.5 m, Df = 1.2 m, H = 0.9 m, Φ' = 40º, c' = 0, and γ = 17 kN/m3. Using a factor of safety of 3, determine the gross allowable load the foundation can carry. Use Eq. (5.3).arrow_forwardAn eccentrically loaded continuous foundation is shown in Figure P4.11. Determine the ultimate load Qu per unit length that the foundation can carry. Use the reduction factor method [Eq. (4.63)].arrow_forward
- A square foundation is shown in Figure P6.19. Use FS = 6,and determine the size of the foundation. Use Prakash and Saran's method [Eq. (6.59)].arrow_forwardThe applied load on a shallow square foundation makes an angle of 15° with the vertical. Given: B= 1.83 m, D;= 0.91 m, 7 = 18.08 kN/m³, ' = 25°, and d' = 23.96 kN/m?. Use FS= 4 and determine the gross allowable (vertical component) load. Use Eq. (16.9).arrow_forwardA continuous foundation with a width of 1 m is located on a slope made of clay soil. Refer to Figure 5.19 and let Df = 1 m, H = 4 m, b = 2 m, γ = 16.8 kN/m3, c = cu = 68 kN/m2, Φ= 0, and β = 60°.a. Determine the allowable bearing capacity of the foundation. Let FS = 3.b. Plot a graph of the ultimate bearing capacity qu if b is changed from 0 to 6 m.arrow_forward
- For the design of an eccentrically loaded shallow foundation, given the following: Y = 19 kN/m³ Ysat = 20 kN/m³ p' = 30° C' = 8 kN/m² Water Table at 0.5 m depth from GL Soil: 3 Foundation: Size = 1.5 m * 1.5 m Df = 1 m from GL e/B = 0.10 (one way eccentricity) Estimate the ultimate load per unit length of the foundation. using Meyerhof's methodarrow_forwardFor a square foundation that is B X B in plan, Df= 2 m; vertical gross allowable load, Qall= 3330 kN; γ= 16,5 kN/m3; φ’= 30°; c’ = 0; and FS= 4. Determine the size of the foundation. Use Eq (16.9)arrow_forwardSolve the attached question using Eq. (6.89) attachedarrow_forward
- H.W 2.pdf > H.Q 6 A flexible foundation measuring 1.5 m x 3 m is supported by a saturated clay. Given: Dr = 1.2 m, H = 3 m, Es (clay)= 600 kN/m2, and qo = 150 kN/m?. Determine the average elastic settlement of the foundation. H.O 7 Figure 7.3 shows a foundation of 10 ft x 6.25 ft resting on a sand deposit. The net load per unit area at the level of the foundation, qo, is 3000 Ib/ft?. For the sand, u, = 0.3, Es = 3200 Ib/in?, Df = 2.5 ft, and H = 32 ft. Assume that the foundation is rigid and determine the elastic settlement the foundation would undergo. H.O 8 Determine the net ultimate bearing capacity of mat foundations with the following characteristics: c, = 2500 Ib/ft, = 0, B = 20 ft, L = 30 ft, D, = 6.2 ft Foundation Engineering I H.W 2 H.O 9 A 20-m-long concrete pile is shown in Figure below. Estimate the ultimate point load Q, by a. Meyerhof's method b. Coyle and Castello's method Concrete pile 460 mm x 460 mm Loose sand 20m y I86 ANi Dee s H.O 10 A concrete pile 20 m long…arrow_forward4.6 For a square foundation that is B X B in plan, D, = 2 m; vertical gross allowable load, Qall = 3330 kN, y = 16.5 kN/m³; ' = 30°; c' = 0; and FS = 4. Determine the size of the foundation. Use Eq. (4.26).arrow_forward10. A flexible foundation is subjected to a uniformly distributed load of q-500 kN/m². Table 3 could be useful. Determine the increase in vertical stress, in kPa, Aoz at a depth of z=3m under point F. B 4m 3m 6m E 10m Table 10.3 Variation of I, with m and n m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.0047 0.0092 0.0270 0.0279 0.2 0.0132 0.0092 0.0179 0.0259 0.0132 0.0259 0.0374 0.0222 0.0242 0.0435 0.0474 0.0629 0.0686 0.0258 0.0504 0.0528 0.0547 0.3 0.0731 0.0766 0.0794 0.4 0.1013 0.5 0.0198 0.0387 0.1202 0.6 0.0222 0.0435 0.7 0.0242 0.0474 0.0947 0.1069 0.1168 0.1247 0.1311 0.1361 0.1365 0.1436 0.1491 0.1537 0.1598 0.0168 0.0198 0.0328 0.0387 0.0474 0.0559 0.0168 0.0328 0.0474 0.0602 0.0711 0.0801 0.0873 0.0931 0.0977 0.0559 0.0711 0.0840 0.0947 0.1034 0.1104 0.1158 0.0629 0.0801 0.0686 0.0873 0.1034 0.8 0.0258 0.0504 0.0731 0.0931 0.1104 0.9 0.0270 0.0528 0.0766 0.0977 0.1158 0.0794 0.1013 0.1202 0.0832 0.1263 1.4 0.1300 1.6 0.0306 0.0599 0.0871 0.1114 0.1324 1.8 0.0309 0.0606…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License