1. In what kind of geological conditions and for what types of building would mat foundations be preferred over other forms of foundation? What are the key advantages of mat foundation under these conditions? If the groundwater table at a site located above the slab of the mat foundation and would rise considerably in wet seasons, indicate that whether it may cause any problem to the building and the means to overcome them. Why we usually use undrained shear strength instead of effective cohesion and effective friction angle to determine the factor of safety for bearing capacity when designing mat foundation? Figure, Tables, and Equations: qu = 5.14c (1+0.1952)(1 +0.4%)+ +q B (10.11) Pile: Meyerhof's method = Q = 4,9, Aq'N ≤ Aq P 9₁ = 0.5ptan o' TABLE 12.6 Interpolated Values of No Based on Meyerhof's Theory Soil friction angle, ' (deg) N₁₂ qu(net) qu-q= 5.14c 1 + 0.195: 5.14c.(1+ 52) (1+0.4%) (10.12) qu(net) = all(net) FS 1.713c. (1 + 0.1952) (1+0.4%) (10.13) General bearing capacity equation : qu = c'NcFcs FcaFci+q'NqFqsFqaFqi + 0.5yBNyFysFyaFyi Shape factors by De Beer Depth factors by Hansen (1970) (1970) Inclination factors by Meyerhof 31 (1963) and Hanna and Meyerhof (1981) 33 Fes 1+) BN LNC Fcd 1+0.4( ẞ° Fci = Fqi = (1 900)2 35 B Fas 1+) tan o' Fqd = 1 + 2 tan q' (1 − sin 4')² Dr - Fyi = (1 2 37 - B 38 Fys = = 1-0.4(7) Fyd = 1 22222222222223226229 20 21 12.4 13.8 15.5 17.9 24 21.4 25 26.0 29.5 27 34.0 28 39.7 46.5 30 56.7 68.2 81.0 96.0 34 115.0 143.0 168.0 194.0 231.0 276.0 40 346.0 41 420.0 42 525.0 Shallow foundation: TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) 43 650.0 TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued) 44 780.0 45 930.0 $' N₂ N₁ Ny $' Ne No No 22 16.88 7.82 7.13 37 55.63 42.92 66.19 $' No N₁ Ny $' No N₁ Ny 0 5.14 1.00 0.00 11 8.80 2.71 1.44 1 5.38 1.09 0.07 12 9.28 2.97 1.69 2 5.63 1.20 0.15 13 9.81 3.26 1.97 3 5.90 1.31 0.24 14 10.37 3.59 2.29 23282 18.05 8.66 8.20 38 61.35 48.93 78.03 24 19.32 9.60 9.44 39 67.87 55.96 92.25 25 20.72 10.66 10.88 40 75.31 64.20 109.41 26 22.25 11.85 12.54 41 83.86 73.90 130.22 27 23.94 13.20 14.47 42 93.71 85.38 155.55 4 6.19 1.43 0.34 15 10.98 3.94 2.65 28 25.80 14.72 16.72 43 105.11 99.02 186.54 5 6.49 1.57 0.45 16 11.63 29 27.86 16.44 4.34 19.34 44 118.37 115.31 224.64 3.06 30 30.14 18.40 22.40 45 133.88 134.88 271.76 6 6.81 1.72 0.57 17 12.34 4.77 3.53 31 32.67 20.63 25.99 46 152.10 158.51 330.35 7 7.16 1.88 0.71 18 13.10 5.26 4.07 32 35.49 23.18 30.22 47 173.64 187.21 403.67 8 7.53 2.06 0.86 19 13.93 5.80 4.68 33 38.64 26.09 35.19 48 199.26 222.31 496.01 9 7.92 2.25 1.03 20 14.83 6.40 5.39 34 42.16 29.44 41.06 49 229.93 265.51 613.16 10 8.35 2.47 1.22 21 15.82 7.07 6.20 35 46.12 33.30 48.03 50 266.89 319.07 762.89 (continued) 36 50.59 37.75 56.31 The critical depth for skin friction in piles L'≈15D The unit frictional resistance or the unit skin friction f = Kσ tan S'

Principles of Foundation Engineering (MindTap Course List)
8th Edition
ISBN:9781305081550
Author:Braja M. Das
Publisher:Braja M. Das
Chapter8: Mat Foundations
Section: Chapter Questions
Problem 8.4P
icon
Related questions
Question

I need detailed explanation solving this exercise from Foundation Engineering, step by step please.

1. In what kind of geological conditions and for what types of building would mat foundations be preferred over other
forms of foundation? What are the key advantages of mat foundation under these conditions? If the groundwater
table at a site located above the slab of the mat foundation and would rise considerably in wet seasons, indicate that
whether it may cause any problem to the building and the means to overcome them. Why we usually use undrained
shear strength instead of effective cohesion and effective friction angle to determine the factor of safety for bearing
capacity when designing mat foundation?
Figure, Tables, and Equations:
qu
= 5.14c (1+0.1952)(1 +0.4%)+
+q
B
(10.11)
Pile: Meyerhof's method
=
Q = 4,9, Aq'N ≤ Aq
P
9₁ = 0.5ptan o'
TABLE 12.6 Interpolated Values of No Based on
Meyerhof's Theory
Soil friction angle, ' (deg)
N₁₂
qu(net) qu-q= 5.14c 1 + 0.195:
5.14c.(1+ 52) (1+0.4%)
(10.12)
qu(net)
=
all(net)
FS
1.713c. (1 + 0.1952) (1+0.4%)
(10.13)
General bearing capacity equation : qu = c'NcFcs FcaFci+q'NqFqsFqaFqi + 0.5yBNyFysFyaFyi
Shape factors by De Beer Depth factors by Hansen (1970)
(1970)
Inclination factors by Meyerhof
31
(1963) and Hanna and Meyerhof
(1981)
33
Fes 1+)
BN
LNC
Fcd 1+0.4(
ẞ°
Fci = Fqi = (1
900)2
35
B
Fas 1+) tan o'
Fqd = 1 + 2 tan q' (1 − sin 4')² Dr
-
Fyi = (1
2
37
-
B
38
Fys
=
= 1-0.4(7)
Fyd = 1
22222222222223226229
20
21
12.4
13.8
15.5
17.9
24
21.4
25
26.0
29.5
27
34.0
28
39.7
46.5
30
56.7
68.2
81.0
96.0
34
115.0
143.0
168.0
194.0
231.0
276.0
40
346.0
41
420.0
42
525.0
Shallow foundation:
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31)
43
650.0
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued)
44
780.0
45
930.0
$'
N₂
N₁
Ny
$'
Ne
No
No
22
16.88
7.82
7.13
37
55.63
42.92
66.19
$'
No
N₁
Ny
$'
No
N₁
Ny
0
5.14
1.00
0.00
11
8.80
2.71
1.44
1
5.38
1.09
0.07
12
9.28
2.97
1.69
2
5.63
1.20
0.15
13
9.81
3.26
1.97
3
5.90
1.31
0.24
14
10.37
3.59
2.29
23282
18.05
8.66
8.20
38
61.35
48.93
78.03
24
19.32
9.60
9.44
39
67.87
55.96
92.25
25
20.72
10.66
10.88
40
75.31
64.20
109.41
26
22.25
11.85
12.54
41
83.86
73.90
130.22
27
23.94
13.20
14.47
42
93.71
85.38
155.55
4
6.19
1.43
0.34
15
10.98
3.94
2.65
28
25.80
14.72
16.72
43
105.11
99.02
186.54
5
6.49
1.57
0.45
16
11.63
29
27.86
16.44
4.34
19.34
44
118.37
115.31
224.64
3.06
30
30.14
18.40
22.40
45
133.88
134.88
271.76
6
6.81
1.72
0.57
17
12.34
4.77
3.53
31
32.67
20.63
25.99
46
152.10
158.51
330.35
7
7.16
1.88
0.71
18
13.10
5.26
4.07
32
35.49
23.18
30.22
47
173.64
187.21
403.67
8
7.53
2.06
0.86
19
13.93
5.80
4.68
33
38.64
26.09
35.19
48
199.26
222.31
496.01
9
7.92
2.25
1.03
20
14.83
6.40
5.39
34
42.16
29.44
41.06
49
229.93
265.51
613.16
10
8.35
2.47
1.22
21
15.82
7.07
6.20
35
46.12
33.30
48.03
50
266.89
319.07
762.89
(continued)
36
50.59
37.75
56.31
The critical depth for skin friction in piles
L'≈15D
The unit frictional resistance or the unit skin friction
f = Kσ tan S'
Transcribed Image Text:1. In what kind of geological conditions and for what types of building would mat foundations be preferred over other forms of foundation? What are the key advantages of mat foundation under these conditions? If the groundwater table at a site located above the slab of the mat foundation and would rise considerably in wet seasons, indicate that whether it may cause any problem to the building and the means to overcome them. Why we usually use undrained shear strength instead of effective cohesion and effective friction angle to determine the factor of safety for bearing capacity when designing mat foundation? Figure, Tables, and Equations: qu = 5.14c (1+0.1952)(1 +0.4%)+ +q B (10.11) Pile: Meyerhof's method = Q = 4,9, Aq'N ≤ Aq P 9₁ = 0.5ptan o' TABLE 12.6 Interpolated Values of No Based on Meyerhof's Theory Soil friction angle, ' (deg) N₁₂ qu(net) qu-q= 5.14c 1 + 0.195: 5.14c.(1+ 52) (1+0.4%) (10.12) qu(net) = all(net) FS 1.713c. (1 + 0.1952) (1+0.4%) (10.13) General bearing capacity equation : qu = c'NcFcs FcaFci+q'NqFqsFqaFqi + 0.5yBNyFysFyaFyi Shape factors by De Beer Depth factors by Hansen (1970) (1970) Inclination factors by Meyerhof 31 (1963) and Hanna and Meyerhof (1981) 33 Fes 1+) BN LNC Fcd 1+0.4( ẞ° Fci = Fqi = (1 900)2 35 B Fas 1+) tan o' Fqd = 1 + 2 tan q' (1 − sin 4')² Dr - Fyi = (1 2 37 - B 38 Fys = = 1-0.4(7) Fyd = 1 22222222222223226229 20 21 12.4 13.8 15.5 17.9 24 21.4 25 26.0 29.5 27 34.0 28 39.7 46.5 30 56.7 68.2 81.0 96.0 34 115.0 143.0 168.0 194.0 231.0 276.0 40 346.0 41 420.0 42 525.0 Shallow foundation: TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) 43 650.0 TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued) 44 780.0 45 930.0 $' N₂ N₁ Ny $' Ne No No 22 16.88 7.82 7.13 37 55.63 42.92 66.19 $' No N₁ Ny $' No N₁ Ny 0 5.14 1.00 0.00 11 8.80 2.71 1.44 1 5.38 1.09 0.07 12 9.28 2.97 1.69 2 5.63 1.20 0.15 13 9.81 3.26 1.97 3 5.90 1.31 0.24 14 10.37 3.59 2.29 23282 18.05 8.66 8.20 38 61.35 48.93 78.03 24 19.32 9.60 9.44 39 67.87 55.96 92.25 25 20.72 10.66 10.88 40 75.31 64.20 109.41 26 22.25 11.85 12.54 41 83.86 73.90 130.22 27 23.94 13.20 14.47 42 93.71 85.38 155.55 4 6.19 1.43 0.34 15 10.98 3.94 2.65 28 25.80 14.72 16.72 43 105.11 99.02 186.54 5 6.49 1.57 0.45 16 11.63 29 27.86 16.44 4.34 19.34 44 118.37 115.31 224.64 3.06 30 30.14 18.40 22.40 45 133.88 134.88 271.76 6 6.81 1.72 0.57 17 12.34 4.77 3.53 31 32.67 20.63 25.99 46 152.10 158.51 330.35 7 7.16 1.88 0.71 18 13.10 5.26 4.07 32 35.49 23.18 30.22 47 173.64 187.21 403.67 8 7.53 2.06 0.86 19 13.93 5.80 4.68 33 38.64 26.09 35.19 48 199.26 222.31 496.01 9 7.92 2.25 1.03 20 14.83 6.40 5.39 34 42.16 29.44 41.06 49 229.93 265.51 613.16 10 8.35 2.47 1.22 21 15.82 7.07 6.20 35 46.12 33.30 48.03 50 266.89 319.07 762.89 (continued) 36 50.59 37.75 56.31 The critical depth for skin friction in piles L'≈15D The unit frictional resistance or the unit skin friction f = Kσ tan S'
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning
Principles of Geotechnical Engineering (MindTap C…
Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning