1)
Name of the quadrant containing the given point.
1st quadrant.
Given information:
Point is:
Formula used:
- If both the coordinates, i.e. both x and y coordinate of a point are positive then it is in 1st quadrant.
- If the x coordinate of point is negative and y coordinate of that point is positive, then it is in 2nd quadrant.
- If both the coordinates, i.e. both x and y coordinate of a point are negative then it is in 3rd quadrant.
- If the x coordinate of point is positive and y coordinate of that point is negative, then it is in 4th quadrant.
Calculation:
To give the name of the quadrant of the point
Since, both the coordinates, i.e. both x and y coordinate of a point are positive then it is in 1st quadrant. Thus, the point
2)
Name of the quadrant containing the given point.
x -axis
Given information:
Point is:
Formula used:
- If both the coordinates, i.e. both x and y coordinate of a point are positive then it is in 1st quadrant.
- If the x coordinate of point is negative and y coordinate of that point is positive, then it is in 2nd quadrant.
- If both the coordinates, i.e. both x and y coordinate of a point are negative then it is in 3rd quadrant.
- If the x coordinate of point is positive and y coordinate of that point is negative, then it is in 4th quadrant.
- The y coordinate of point on x -axis is 0.
- The x coordinate of point on y -axis is 0.
Calculation:
To give the name of the quadrant of the point
First note that the y coordinate of given point is 0, and it indicates that the point is on x -axis.
Thus,
3)
Name of the quadrant containing the given point.
3rd quadrant.
Given information:
Point is:
Formula used:
- If both the coordinates, i.e. both x and y coordinate of a point are positive then it is in 1st quadrant.
- If the x coordinate of point is negative and y coordinate of that point is positive, then it is in 2nd quadrant.
- If both the coordinates, i.e. both x and y coordinate of a point are negative then it is in 3rd quadrant.
- If the x coordinate of point is positive and y coordinate of that point is negative, then it is in 4th quadrant.
Calculation:
To give the name of the quadrant of the point
Since, the sign of both the coordinates, i.e. both x and y coordinate of a point are negative then it is in 3rd quadrant.
Thus, the point
4)
Name of the quadrant containing the given point.
3rd quadrant.
Given information:
Point is:
Formula used:
- If both the coordinates, i.e. both x and y coordinate of a point are positive then it is in 1st quadrant.
- If the x coordinate of point is negative and y coordinate of that point is positive, then it is in 2nd quadrant.
- If both the coordinates, i.e. both x and y coordinate of a point are negative then it is in 3rd quadrant.
- If the x coordinate of point is positive and y coordinate of that point is negative, then it is in 4th quadrant.
Calculation:
To give the name of the quadrant of the point
Since, the sign of both the coordinates, i.e. both x and y coordinate of a point are negative then it is in 3rd quadrant.
Thus, the point
Chapter P Solutions
Precalculus: Graphical, Numerical, Algebraic Common Core 10th Edition
- nd ave a ction and ave an 48. The domain of f y=f'(x) x 1 2 (= x<0 x<0 = f(x) possible. Group Activity In Exercises 49 and 50, do the following. (a) Find the absolute extrema of f and where they occur. (b) Find any points of inflection. (c) Sketch a possible graph of f. 49. f is continuous on [0,3] and satisfies the following. X 0 1 2 3 f 0 2 0 -2 f' 3 0 does not exist -3 f" 0 -1 does not exist 0 ve tes where X 0 < x <1 1< x <2 2arrow_forwardNumerically estimate the value of limx→2+x3−83x−9, rounded correctly to one decimal place. In the provided table below, you must enter your answers rounded exactly to the correct number of decimals, based on the Numerical Conventions for MATH1044 (see lecture notes 1.3 Actions page 3). If there are more rows provided in the table than you need, enter NA for those output values in the table that should not be used. x→2+ x3−83x−9 2.1 2.01 2.001 2.0001 2.00001 2.000001arrow_forwardFind the general solution of the given differential equation. (1+x)dy/dx - xy = x +x2arrow_forwardEstimate the instantaneous rate of change of the function f(x) = 2x² - 3x − 4 at x = -2 using the average rate of change over successively smaller intervals.arrow_forwardGiven the graph of f(x) below. Determine the average rate of change of f(x) from x = 1 to x = 6. Give your answer as a simplified fraction if necessary. For example, if you found that msec = 1, you would enter 1. 3' −2] 3 -5 -6 2 3 4 5 6 7 Ꮖarrow_forwardGiven the graph of f(x) below. Determine the average rate of change of f(x) from x = -2 to x = 2. Give your answer as a simplified fraction if necessary. For example, if you found that msec = , you would enter 3 2 2 3 X 23arrow_forwardA function is defined on the interval (-π/2,π/2) by this multipart rule: if -π/2 < x < 0 f(x) = a if x=0 31-tan x +31-cot x if 0 < x < π/2 Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0. a= b= 3arrow_forwardUse the definition of continuity and the properties of limits to show that the function is continuous at the given number a. f(x) = (x + 4x4) 5, a = -1 lim f(x) X--1 = lim x+4x X--1 lim X-1 4 x+4x 5 ))" 5 )) by the power law by the sum law lim (x) + lim X--1 4 4x X-1 -(0,00+( Find f(-1). f(-1)=243 lim (x) + -1 +4 35 4 ([ ) lim (x4) 5 x-1 Thus, by the definition of continuity, f is continuous at a = -1. by the multiple constant law by the direct substitution propertyarrow_forward1. Compute Lo F⚫dr, where and C is defined by F(x, y) = (x² + y)i + (y − x)j r(t) = (12t)i + (1 − 4t + 4t²)j from the point (1, 1) to the origin.arrow_forward2. Consider the vector force: F(x, y, z) = 2xye²i + (x²e² + y)j + (x²ye² — z)k. (A) [80%] Show that F satisfies the conditions for a conservative vector field, and find a potential function (x, y, z) for F. Remark: To find o, you must use the method explained in the lecture. (B) [20%] Use the Fundamental Theorem for Line Integrals to compute the work done by F on an object moves along any path from (0,1,2) to (2, 1, -8).arrow_forwardhelp pleasearrow_forwardIn each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2yarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning