General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.50QP
Arrange the following in order of increasing ionic radius: I−, Cs+, and Te2+. Explain this order. (You may use a periodic table.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
1. Arrange the following ions in order of increasing ionic radius: chloride ion, potassium ion, phosphide ion, calcium ion.
Consider an ionic compound, MX3, composed of generic metal M and generic gaseous halogen X.
The enthalpy of formation of MX3 is Δ?∘f=−925 kJ/mol.
The enthalpy of sublimation of M is Δ?sub=175 kJ/mol.
The first, second, and third ionization energies of M are IE1=579 kJ/mol, IE2=1677 kJ/mol, and IE3=2479 kJ/mol.
The electron affinity of X is Δ?EA=−369 kJ/mol. (Refer to the hint).
The bond energy of X2 is BE=179 kJ/mol.
Determine the lattice energy of MX3.
Rank the following five ions in order of decreasing radius. Use the periodic table as necessary.
Rank from largest to smallest radius. To rank items as equivalent, overlap them.
F−
Cl−
Br−
I−
At−
Chapter 9 Solutions
General Chemistry - Standalone book (MindTap Course List)
Ch. 9.1 - Represent the transfer of electrons from magnesium...Ch. 9.2 - Prob. 9.2ECh. 9.2 - Prob. 9.3ECh. 9.2 - Prob. 9.4ECh. 9.2 - The following are electron configurations for some...Ch. 9.3 - Which has the larger radius, S or S2? Explain.Ch. 9.3 - Without looking at Table 9.3, arrange the...Ch. 9.3 - Prob. 9.7ECh. 9.5 - Using electronegativities, decide which of the...Ch. 9.6 - Dichlorodifluoromethane, CCl2F2, is a gas used as...
Ch. 9.6 - Prob. 9.10ECh. 9.6 - Prob. 9.11ECh. 9.6 - Prob. 9.2CCCh. 9.7 - Prob. 9.12ECh. 9.8 - Prob. 9.13ECh. 9.8 - Prob. 9.14ECh. 9.9 - Prob. 9.15ECh. 9.9 - Prob. 9.3CCCh. 9.10 - Estimate the OH bond length in H2O from the...Ch. 9.10 - Formic acid, isolated in 1670, is the irritant in...Ch. 9.11 - Use bond enthalpies to estimate the enthalpy...Ch. 9 - Describe the formation of a sodium chloride...Ch. 9 - Prob. 9.2QPCh. 9 - Prob. 9.3QPCh. 9 - Define lattice energy for potassium bromide.Ch. 9 - Why do most monatomic cations of the main-group...Ch. 9 - Prob. 9.6QPCh. 9 - Prob. 9.7QPCh. 9 - Prob. 9.8QPCh. 9 - Prob. 9.9QPCh. 9 - Draw a potential-energy diagram for a molecule...Ch. 9 - Prob. 9.11QPCh. 9 - Prob. 9.12QPCh. 9 - Prob. 9.13QPCh. 9 - Prob. 9.14QPCh. 9 - Prob. 9.15QPCh. 9 - Prob. 9.16QPCh. 9 - Prob. 9.17QPCh. 9 - Prob. 9.18QPCh. 9 - Which of the following contains both ionic and...Ch. 9 - The radii of the species S, S+, and S decrease in...Ch. 9 - Prob. 9.21QPCh. 9 - Prob. 9.22QPCh. 9 - Prob. 9.23QPCh. 9 - Bond Enthalpy When atoms of the hypothetical...Ch. 9 - You land on a distant planet in another universe...Ch. 9 - Which of the following represent configurations of...Ch. 9 - Prob. 9.27QPCh. 9 - Prob. 9.28QPCh. 9 - Prob. 9.29QPCh. 9 - For each of the following molecular models, write...Ch. 9 - For each of the following molecular formulas, draw...Ch. 9 - Below are three resonance formulas for N2O...Ch. 9 - Lithium, Li, reacts with element X to form an...Ch. 9 - Prob. 9.34QPCh. 9 - Prob. 9.35QPCh. 9 - Prob. 9.36QPCh. 9 - Use Lewis symbols to represent the transfer of...Ch. 9 - Use Lewis symbols to represent the electron...Ch. 9 - Prob. 9.39QPCh. 9 - Prob. 9.40QPCh. 9 - Prob. 9.41QPCh. 9 - Prob. 9.42QPCh. 9 - Prob. 9.43QPCh. 9 - Prob. 9.44QPCh. 9 - Prob. 9.45QPCh. 9 - Prob. 9.46QPCh. 9 - Prob. 9.47QPCh. 9 - Which has the larger radius, N3 or P3? Explain....Ch. 9 - Arrange the following in order of increasing ionic...Ch. 9 - Arrange the following in order of increasing ionic...Ch. 9 - Use Lewis symbols to show the reaction of atoms to...Ch. 9 - Prob. 9.52QPCh. 9 - Assuming that the atoms form the normal number of...Ch. 9 - Assuming that the atoms form the normal number of...Ch. 9 - Prob. 9.55QPCh. 9 - Prob. 9.56QPCh. 9 - Arrange the following bonds in order of increasing...Ch. 9 - Decide which of the following bonds is least polar...Ch. 9 - Prob. 9.59QPCh. 9 - Prob. 9.60QPCh. 9 - Prob. 9.61QPCh. 9 - Write Lewis formulas for the following molecules:...Ch. 9 - Write Lewis formulas for the following molecules:...Ch. 9 - Write Lewis formulas for the following molecules:...Ch. 9 - Write Lewis formulas for the following ions: a ClO...Ch. 9 - Write Lewis formulas for the following ions: a...Ch. 9 - Write resonance descriptions for the following: a...Ch. 9 - Prob. 9.68QPCh. 9 - Prob. 9.69QPCh. 9 - Prob. 9.70QPCh. 9 - Write Lewis formulas for the following: a XeF2 b...Ch. 9 - Write Lewis formulas for the following: a I3 b...Ch. 9 - Write Lewis formulas for the following: a BCl3 b...Ch. 9 - Write Lewis formulas for the following: a BeF2 b...Ch. 9 - Write a Lewis formula for each of the following,...Ch. 9 - Write a Lewis formula for each of the following,...Ch. 9 - Prob. 9.77QPCh. 9 - For each of the following, use formal charges to...Ch. 9 - Prob. 9.79QPCh. 9 - Prob. 9.80QPCh. 9 - Calculate the bond length for each of the...Ch. 9 - Prob. 9.82QPCh. 9 - One of the following compounds has a...Ch. 9 - Prob. 9.84QPCh. 9 - Use bond enthalpies (Table 9.5) to estimate H for...Ch. 9 - A commercial process for preparing ethanol (ethyl...Ch. 9 - For each of the following pairs of elements, state...Ch. 9 - For each of the following pairs of elements, state...Ch. 9 - Prob. 9.89QPCh. 9 - Prob. 9.90QPCh. 9 - Iodic acid, HIO3, is a colorless, crystalline...Ch. 9 - Prob. 9.92QPCh. 9 - Sodium amide, known commercially as sodamide, is...Ch. 9 - Prob. 9.94QPCh. 9 - Nitronium perchlorate, NO2ClO4, is a reactive salt...Ch. 9 - Solid phosphorus pentabromide, PBr5, has been...Ch. 9 - Write electron-dot formulas for the following: a...Ch. 9 - Prob. 9.98QPCh. 9 - Prob. 9.99QPCh. 9 - Write Lewis formulas for the following: a AlCl4 b...Ch. 9 - Prob. 9.101QPCh. 9 - Prob. 9.102QPCh. 9 - Prob. 9.103QPCh. 9 - Acetic acid has the structure CH3CO(OH), in which...Ch. 9 - Prob. 9.105QPCh. 9 - Methyl nitrite has the structure No attempt has...Ch. 9 - Prob. 9.107QPCh. 9 - Prob. 9.108QPCh. 9 - Use bond enthalpies to estimate H for the reaction...Ch. 9 - Prob. 9.110QPCh. 9 - Compare the properties of an ionic material such...Ch. 9 - Prob. 9.112QPCh. 9 - Explain the decomposition of nitroglycerin in...Ch. 9 - How did the Swedish chemist Alfred Nobel manage to...Ch. 9 - What property of a chemical bond gives rise to the...Ch. 9 - Prob. 9.116QPCh. 9 - Prob. 9.117QPCh. 9 - Calculate the lattice energy of potassium...Ch. 9 - Prob. 9.119QPCh. 9 - Prob. 9.120QPCh. 9 - Prob. 9.121QPCh. 9 - An ion M2+ has the configuration [Ar]3d2, and an...Ch. 9 - Prob. 9.123QPCh. 9 - Prob. 9.124QPCh. 9 - Prob. 9.125QPCh. 9 - Prob. 9.126QPCh. 9 - Which of the following molecules contains only...Ch. 9 - Prob. 9.128QPCh. 9 - Two fourth-period atoms, one of a transition...Ch. 9 - Prob. 9.130QPCh. 9 - Draw resonance formulas of the phosphoric acid...Ch. 9 - Prob. 9.132QPCh. 9 - Prob. 9.133QPCh. 9 - Prob. 9.134QPCh. 9 - Prob. 9.135QPCh. 9 - Prob. 9.136QPCh. 9 - Phosphorous acid. H3PO3, has the structure...Ch. 9 - Hypophosphorous acid, H3PO2, has the structure...Ch. 9 - An ionic compound has the following composition...Ch. 9 - An ionic compound has the following composition...Ch. 9 - A gaseous compound has the following composition...Ch. 9 - A liquid compound used in dry cleaning contains...Ch. 9 - A compound of tin and chlorine is a colorless...Ch. 9 - Prob. 9.144QPCh. 9 - Calculate the enthalpy of reaction for...Ch. 9 - Prob. 9.146QPCh. 9 - Prob. 9.147QPCh. 9 - Prob. 9.148QPCh. 9 - Prob. 9.149QPCh. 9 - Prob. 9.150QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which has the larger radius, N3- or P3-? Explain. (You may use a periodic table.)arrow_forwardConsider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−411ΔHf∘=−411 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=101ΔHsub=101 kJ/mol. The ionization energy of MM is IE=461IE=461 kJ/mol. The electron affinity of XX is Δ?EA=−325ΔHEA=−325 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=189BE=189 kJ/mol. Determine the lattice energy of MXMX.arrow_forwardConsider an ionic compound, MX3, composed of generic metal M and generic gaseous halogen X. The enthalpy of formation of MX3 is ΔHf∘=−965 kJ/mol. The enthalpy of sublimation of M is ΔHsub=123 kJ/mol. The first, second, and third ionization energies of M are IE1=557 kJ?mol, IE2=1751 kJ/mol, and IE3=2731 kJ/mol. The electron affinity of X is ΔHEA=−339 kJ/mol The bond energy of X2 is BE=235 kJ/mol. Determine the lattice energy of MX3.arrow_forward
- Consider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−553ΔHf∘=−553 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=129ΔHsub=129 kJ/mol. The ionization energy of MM is IE=491IE=491 kJ/mol. The electron affinity of XX is Δ?EA=−325ΔHEA=−325 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=219BE=219 kJ/mol. Determine the lattice energy of MXMX. Δ?lattice=ΔHlattice= kJ/molarrow_forwardConsider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−553ΔHf∘=−553 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=105ΔHsub=105 kJ/mol. The ionization energy of MM is IE=483IE=483 kJ/mol. The electron affinity of XX is Δ?EA=−307ΔHEA=−307 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=213BE=213 kJ/mol. Determine the lattice energy of MXMX. Δ?lattice=ΔHlattice= kJ/molarrow_forward3. Of the elements Nd, Al, and Ar, which will readily form(s) +3 ions? Why? 4. The atomic radii of Na and Cl are 190 and 79 pm, respectively, but the distance between sodium and chlorine in NaCl is 282 pm. Explain this discrepancy.arrow_forward
- Using the following thermodynamic data, calculate the lattice enthalpy of lithium oxide: Li(g) → Li*(g) + e* AH₁= 540 kJ /mol Li(s) → Li(g) AHS= +146 kJ/mol O₂(s) → 20(g) AH₂= +488 kJ /mol O(g) + 1e →→ O(g) AHA1= -142 kJ /mol O` (g) + 1e¯ → 0²-(g) AHÃ₂= +844 kJ /mol 2Li(s) + 1/2O₂(g) → Li₂O(s) AH₁= -586 kJ /mol NOTE: Give your answer in kJ mol-¹arrow_forwardConsider an ionic compound, MX2MX2, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MX2MX2 is Δ?∘f=−923ΔHf∘=−923 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=131ΔHsub=131 kJ/mol. The first and second ionization energies of MM are IE1=755IE1=755 kJ/mol and IE2=1364IE2=1364 kJ/mol. The electron affinity of XX is Δ?EA=−329ΔHEA=−329 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=153BE=153 kJ/mol. Determine the lattice energy of MX2MX2. Δ?lattice=ΔHlattice= kJ/molarrow_forwardEstimate the ionic radius of Cs+. The lattice energy of CsCl is 633 kJ/mol. For CsCl the Madelungconstant, M, is 1.763, and the Born exponent, n, is 10.7. The ionic radius of Cl– is known to be 1.81 Åarrow_forward
- The first laboratory experiments to produce compounds containing noble gas atoms aroused great excitement, not because the compounds might be useful but because they demonstrated that the noble gases were not completely inert. Since that time, however, important uses have been found for a number of noble gas compounds. For example, xenon difluoride, XeF2, is an excellent fluorinating agent (a substance that adds fluorine atoms to other substances). One reason it is preferred over certain other fluorinating agents is that the products of its fluorinating reactions are easily separated from the gaseous xenon. The following unbalanced equation represents one such reaction: S3O9 + XeF2 → S2O6F2 + Xe Balance this equation. What is the minimum number of moles of XeF2 necessary to react with 4 moles of S3O9? What is the maximum number of moles of S2O6F2 that can form from the complete reaction of 4 moles of S3O9 and 7 moles of XeF2? How many moles of xenon gas form from the complete…arrow_forwardArrange these ions according to ionic radius. Ca2+, K+, Cl-, S^2-, P^3-arrow_forwardHow is F3O4 the oxide ion of Fe 3+?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Periodic Properties of Elements | Chemistry | IIT-JEE | NEET | CBSE | Misostudy; Author: Misostudy;https://www.youtube.com/watch?v=L26rRWz4_AI;License: Standard YouTube License, CC-BY
Periodic Trends: Electronegativity, Ionization Energy, Atomic Radius - TUTOR HOTLINE; Author: Melissa Maribel;https://www.youtube.com/watch?v=0h8q1GIQ-H4;License: Standard YouTube License, CC-BY