Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9.34P
To determine
The thermal flux at the point where the gold foil was irradiated.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
During a routine Radiation Therapy procedure of Mr. X, the radiation dose at particular points at the trajectory of the beam towards the lesion is as follows 1. 15 MV 2. 10 MV 3. 8 MV 4. 6 MV 5. 5MV 6. 3 Mv 7. 2MV 8. 1 MV with the reference dose being the 5th, compute for the PDD of the beam at all points of the beam preceding the Dmax
A particular radioactive source produces 100 mrad of 2-MeV gamma rays per hour at a distance of 1.0 m. (a) How long could a person stand at this distance before accumulating an intolerable dose of 1 rem? (b) Assuming the gamma radiation is emitted uniformly in all directions, at what distance would a person recieve a dose of 10 mrad/h from this source?
dont provode hand written solution
Control rods are usually made of an alloy of indium. The absorption cross-section of indium for thermal neutron is 71 b, and the mass density of solid indium is 7.31 g cm-3. Estimate the neutron transmission ratio of a 1-cm thick indium slab.
(a) 0.07
(b)0.7
(c) 0.01
(d) 0.1
Chapter 9 Solutions
Introduction To Health Physics
Ch. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - Prob. 9.4PCh. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - Prob. 9.10P
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - Prob. 9.13PCh. 9 - A counting system has a background of 360 counts...Ch. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.31PCh. 9 - Prob. 9.33PCh. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - Prob. 9.44P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the dose in mSv for: (a) a 0.1 Gy xray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of exposure?arrow_forwardData from the appendices and the periodic table may be needed for these problems. Show that the activity of the 14C in 1.00 g of 12C found in living tissue is 0.250 Bq.arrow_forwardFind the radiation dose in Gy for: (a) A 10-mSv fluoroscopic X-ray series, (b) 50 mSv of skin exposure by an a emitter, (c) 160 mSv of and rays from the 40K in your body.arrow_forward
- A beam of 5.0 MeV alpha particles (q-2e) has a cross-sectional area of 1.50 cm2. It is incident on flesh (p-950 kg/m³) and penetrates to a depth of 0.70 mm. a) What dose in Gy does the beam provide to the flesh in a time of 3.0 s? b) What effective dose does it provide? Assume the beam to carry a current of 2.50 x 109 A and to have QF - 14.arrow_forwardA small 10-gram source of cobalt-60 is in a vacuum. (a) What is the activity of the cobalt-60source in Bq? (b) What is the actual gamma-ray flux in cm2-s-1 at a point of measurement500 cm from the source due to the cobalt-60 emitted gamma-rays? (c) If the backgroundgamma-ray flux in the vicinity of the 10-g source is 7.8×107cm-2-s-1, what is the totalgamma-ray flux at the point of measurement, including the background? (d) What thicknessof a lead shield in cm would have to be placed between the source and the point ofmeasurement to reduce the total of the background plus the uncollided gamma-ray flux fromthe cobalt-60 source to 1.00×108cm-2-s-1 at that point? (I've attempted part a of the problem and don't know how to continue)arrow_forwardAn unknown B emitter was counter in a simple Geiger set up using aluminium absorbers to determine the range of the beta particle and to attempt to identify the isotope. The thickness of aluminium needed to reduce the counts to background was 0.109 mm, the distance between the source and the end-window of the Geiger tube was 1.3cm and the end window density thickness was 1.7 mg/cm (the density of air is 1.293 mg/cm3 at STP and that of aluminium is 2.7 g/cm3). A repeat of the experiment after 3 weeks showed that the initial activity of the source has decreased by around 15%. With this information identify the unknown source.arrow_forward
- The radionuclide 32P (T1/2 = 14.28 d) is often used as a tracer to follow the course of biochemical reactions involving phosphorus. (a) If the counting rate in a particular experimental setup is initially 3050 counts/s, how much time will the rate take to fall to 170 counts/s? (b) A solution containing 32P is fed to the root system of an experimental tomato plant, and the 32P activity in a leaf is measured 3.48 days later. By what factor must this reading be multiplied to correct for the decay that has occurred since the experiment began?arrow_forwardA 53.0 kgkg laboratory worker is exposed to 26.0 mJmJ of beta radiation with RBE = 1.5. What is the dose equivalent in mremmrem?arrow_forward4arrow_forward
- Consider the region close to a nuclear reactor that produces large fluxes of prompt gamma rays with energies of about 7 MeV. Use the graph below, showing the mass attenuation coefficient of gamma rays in different stopping media as a function of energy, to determine the approximate thickness of lead shielding which would be required to reduce the gamma flux by a factor of 101º. The density of lead is 11.3 g cm. 10 5 Pb 0.5 0.1 Pb 0.05 Cu AL 0.01 0.01 0.05 0.1 0.5 1 5 10 50 100 Energy (MeV) Attenuation coefficient (cm²g")arrow_forwardQ7arrow_forward(Internal Exposure: Internal Radiation Dose) Given a 20µCi of 32p (T/2 = 14.3 days) is delivered intravenously of a reference adult (70 kg). The biological half-life throughout the body is 19 days. Calculate: a. the absorbed dose constant (express your answer in erg/g t and Gy/t) for P-32 irradiating the whole body uniformly b. total number of transformations that occur in the total body as a source organ; assume that P-32 is metabolized wherein 40% is uniformly distributed to the whole body thus the initial activity distributed in the total body is q, = 0.40 × 20µCi = 8µCi c. the total body dose. where t refers to the transformation number. Note: 1 Joule = 107ergarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax