Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9.23P
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The linear attenuation coefficient for 2.0-MeV gamma rays in water is 4.9 m-1 and 52 m-1 in lead. What thickness of water would give the same shielding for gamma rays as 15 mm of lead?
A small 10-gram source of cobalt-60 is in a vacuum. (a) What is the activity of the cobalt-60source in Bq? (b) What is the actual gamma-ray flux in cm2-s-1 at a point of measurement500 cm from the source due to the cobalt-60 emitted gamma-rays? (c) If the backgroundgamma-ray flux in the vicinity of the 10-g source is 7.8×107cm-2-s-1, what is the totalgamma-ray flux at the point of measurement, including the background? (d) What thicknessof a lead shield in cm would have to be placed between the source and the point ofmeasurement to reduce the total of the background plus the uncollided gamma-ray flux fromthe cobalt-60 source to 1.00×108cm-2-s-1 at that point?
(I've attempted part a of the problem and don't know how to continue)
Tungsten has a linear attenuation coefficient of 30.5/cm for gamma rays with 150 keV of
energy. If an unshielded Tc-99m syringe has a radiation exposure rate (I(0)) of 34 mR/hr, what
will be the exposure rate if a 0.25-cm tungsten shield is placed around it?
Using the calculation above, how much (what percent) is transmitted through the shield? What
percent is attenuated?
Chapter 9 Solutions
Introduction To Health Physics
Ch. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - Prob. 9.4PCh. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - Prob. 9.10P
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - Prob. 9.13PCh. 9 - A counting system has a background of 360 counts...Ch. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.31PCh. 9 - Prob. 9.33PCh. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - Prob. 9.44P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardThe linear absorption coefficient for 5-MeV gamma rays in lead is 78 m-1. Find the thickness of lead required to reduce by one-fourth the intensity of beam of such gamma rays.arrow_forward25. A radiograph made with an exposure of 12 mA per minute has a density of 0.8 in the area of interest. It is desired to increase the density to 2.0 in this area. By reference to a characteristic curve of the film, it is found that the difference in log e between a density of 0.8 and 2.0 is 0.76. The antilogarithm of log 0.76 is 5.8 (relative exposure factor). What must the new exposure time be to produce a radiograph with a density of 2.0, assuming the first exposure time was 1 minute?arrow_forward
- A beam of 5.0 MeV alpha particles (q-2e) has a cross-sectional area of 1.50 cm2. It is incident on flesh (p-950 kg/m³) and penetrates to a depth of 0.70 mm. a) What dose in Gy does the beam provide to the flesh in a time of 3.0 s? b) What effective dose does it provide? Assume the beam to carry a current of 2.50 x 109 A and to have QF - 14.arrow_forwardquestion 4 pleasearrow_forwardA radioactive source is producing 1.50 MeV gamma rays. If two detectors are placed 4.00 m and 7.00 m away respectively, what is the ratio of the measured intensities of the near detector over the far detector (I2/I1)? Do NOT include units in your answer answer to 2 decimal places.arrow_forward
- A turbine receives 70 pounds of fluid per minute with an enthalpy of 1600 British Thermal Unit Unit per pound and a velocity of 100 fps. It leaves the turbine at 900 fps and 1230 BTU/Ilb enthalpy. The radiation loss is 48,000 BTU/hr. Find the horsepower output. Round-up your answer to the nearest whole number.arrow_forward4arrow_forwardWhat is the dose rate for the muscle from g-ray source having flux of 100 photons per cm2/s ? (E g=2 MeV, m =0.025 cm-1)arrow_forward
- A radiographic technique calls for 46 kVp and 28 mAs which results in an exposure of 278 µGy. What is the expected exposure if the technique is changed to 75 kVp and 14 mAs? Round your answer to the nearest whole number. Do not include units.arrow_forwardCalculate the dose in Sv to the chest of a patient given anx-ray under the following conditions. The x-ray beam intensityis 1.50 W/m2 , the area of the chest exposed is0.0750 m2 , 35.0% of the x-rays are absorbed in 20.0 kg oftissue, and the exposure time is 0.250 s.arrow_forwardFor conventional radiography with a tungsten target, how much X-Raybeam intensity is due to Bremsstrahlung?(A) 10 %(B) 40 %(C) 60 %(D) 90 %arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning