Concept explainers
Calculate the molar concentration of
a.
b.
c.
d.
e.
(a)
Interpretation:
The molar concentration of
Concept introduction:
The water undergoes self-ionization which can be represented by the reaction,
The ionization constant of water is represented as,
The concentration of water remains constant and the self-ionization constant of water becomes,
Answer to Problem 9.29E
The molar concentration of
Explanation of Solution
The ionic product of water
The value of
The given
Thus, the molar concentration of
The molar concentration of
(b)
Interpretation:
The molar concentration of
Concept introduction:
The water undergoes self-ionization which can be represented by the reaction,
The ionization constant of water is represented as,
The concentration of water remains constant and the self-ionization constant of water becomes,
Answer to Problem 9.29E
The molar concentration of
Explanation of Solution
The ionic product of water
The value of
The given
Thus, the molar concentration of
The molar concentration of
(c)
Interpretation:
The molar concentration of
Concept introduction:
The water undergoes self-ionization which can be represented by the reaction,
The ionization constant of water is represented as,
The concentration of water remains constant and the self-ionization constant of water becomes,
Answer to Problem 9.29E
The molar concentration of
Explanation of Solution
The ionic product of water
The value of
The given
Thus, the molar concentration of
The molar concentration of
(d)
Interpretation:
The molar concentration of
Concept introduction:
The water undergoes self-ionization which can be represented by the reaction,
The ionization constant of water is represented as,
The concentration of water remains constant and the self-ionization constant of water becomes,
Answer to Problem 9.29E
The molar concentration of
Explanation of Solution
The ionic product of water
The value of
The given
Thus, the molar concentration of
The molar concentration of
(e)
Interpretation:
The molar concentration of
Concept introduction:
The water undergoes self-ionization which can be represented by the reaction,
The ionization constant of water is represented as,
The concentration of water remains constant and the self-ionization constant of water becomes,
Answer to Problem 9.29E
The molar concentration of
Explanation of Solution
The ionic product of water
The value of
The given
Thus, the molar concentration of
The molar concentration of
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry for Today: General, Organic, and Biochemistry
- Calculate the concentration of all solute species in each of the following solutions of acids or bases. Assume that the ionization of water can be neglected, and show that the change in the initial concentrations can be neglected, Ionization constants can be found in Appendix H and Appendix I. (a) 0.0092 M HCIO, a weak acid. (b) 0.0784 M C6H5NH2, a weak base. (c) 0.0810 M HCN, a weak acid. (d) 0.11 M (CH3)3N, a weak base. (e) 0.120 M Fe(H2O)62+ a weak acid, Ka=1.6107arrow_forwardTwo strategies are also followed when solving for the pH of a base in water. What is the strategy for calculating the pH of a strong base in water? List the strong bases mentioned in the text that should be committed to memory. Why is calculating the pH of Ca(OH)2 solutions a little more difficult than calculating the pH of NaOH solutions? Most bases are weak bases. The presence of what element most commonly results in basic properties for an organic compound? What is present on this element in compounds that allows it to accept a proton? Table 13-3 and Appendix 5 of the text list Kb values for some weak bases. What strategy is used to solve for the pH of a weak base in water? What assumptions are made when solving for the pH of weak base solutions? If the 5% rule fails, how do you calculate the pH of a weak base in water?arrow_forward. A bottle of acid solution is labeled “3 M HNO3.” What are the substances that are actually present in the solution? Are any FINO molecules present? Why or why not?arrow_forward
- Hydrazine, N2H4, can interact with water in two steps. N2H4(aq) + H2O() N2H5+(aq) + OH(aq) Kb1 = 8.5 107 N2H5+(aq) + H2O() N2H62+(aq) + OH(aq) Kb2 = 8.9 1016 (a) What is the concentration of OH, N2H5+ and N2H62+ in a 0.010M aqueous solution of hydrazine? (b) What is the pH of the 0.010M solution hydrazine?arrow_forwardIonization of the first proton from H2SO4 is complete (H2SO4 is a strong acid); the acid-ionization constant for the second proton is 1.1 102. a What would be the approximate hydronium-ion concentration in 0.100 M H2SO4 if ionization of the second proton were ignored? b The ionization of the second proton must be considered for a more exact answer, however. Calculate the hydronium-ion concentration in 0.100 M H2SO4, accounting for the ionization of both protons.arrow_forwardGiven the following solutions: (a) 0.1 M NH3 (b) 0.1 M Na2CO3 (c) 0.1 M NaCl (d) 0.1 M CH3CO2H (e) 0.1 M NH4Cl (f) 0.l MNH4CH3CO2 (g) 0.1 M NH4CH3CO2 (i) Which of the solutions are acidic? (ii) Which of the solutions are basic? (iii) Which of the solutions is most acidic?arrow_forward
- The active ingredient formed by aspirin in the body is salicylic acid, C6H4OH(CO2H). The carboxyl group. (-CO2H) acts as a weak acid. The phenol group (an OH group bonded to an aromatic ring) also acts as an acid but a much weaker acid. List, in order of descending concentration, all of the ionic and molecular species present in a 0.001-M aqueous solution of C6H4OH(CO2H).arrow_forwardFigure 14.3 shows the pH of some common solutions. How many times more acidic or basic is each of these compared with a neutral solution? (a) Black coffee (b) Household ammonia (c) Baking soda (d) Vinegararrow_forwardCalculate [CO32] in a 0.010-M solution of CO2 in water (usually written as H2CO3). If all the CO32 in this solution comes from the reaction HCO3(aq)H+(aq)+CO32(aq) what percentage of the H+ ions in the solution is a result of the dissociation of HCO3? When acid is added to a solution of sodium hydrogen carbonate (NaHCO3), vigorous bubbling occurs. How is this reaction related to the existence of carbonic acid (H2CO3) molecules in aqueous solution?arrow_forward
- In each of the following acid-base reactions, identify the Brnsted acid and base on the left and their conjugate partners on the right. (a) HCO2H(aq) + H2O() HCO2(aq) + H3O+(aq) (b) NH3(aq) + H2S(aq) NH4+(aq) + HS(aq) (c) HSO4(aq) + OH(aq) SO42(aq) + H2O+()arrow_forwardFor each of the following pairs of solutions, indicate whether the first listed solution has a higher or lower pH than the second listed solution. a. 1.0 M NaOH and 1.0 M HCl b. 1.0 M HNO3 and 0.10 M HNO3 c. 0.10 M HClO4 and 0.10 M HCN d. [H3O+] = 3.3 103 and [H3O+] = 9.3 103arrow_forwardWrite chemical equations showing the individual proton-transfer steps that occur in aqueous solution for each of the following acids. a. H2CO3 (carbonic acid) b. H2C3H2O4 (malonic acid)arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning