(a)
Interpretation:
The dissociation reactions and
Concept introduction:
The strength of acids and bases can be determined on the basis of their dissociation reactions and their dissociation constants. Those acids or bases which dissociate almost completely are strong acids or strong bases and those which dissociate to smaller extents are weak or moderately weak acids and weak bases.
Answer to Problem 9.84E
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
Explanation of Solution
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
The
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
(b)
Interpretation:
The dissociation reactions and
Concept introduction:
The strength of acids and bases can be determined on the basis of their dissociation reactions and their dissociation constants. Those acids or bases which dissociate almost completely are strong acids or strong bases and those which dissociate to smaller extents are weak or moderately weak acids and weak bases.
Answer to Problem 9.84E
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
Explanation of Solution
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
The
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
(c)
Interpretation:
The dissociation reactions and
Concept introduction:
The strength of acids and bases can be determined on the basis of their dissociation reactions and their dissociation constants. Those acids or bases which dissociate almost completely are strong acids or strong bases and those which dissociate to smaller extents are weak or moderately weak acids and weak bases.
Answer to Problem 9.84E
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
Explanation of Solution
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
The
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
(d)
Interpretation:
The dissociation reactions and
Concept introduction:
The strength of acids and bases can be determined on the basis of their dissociation reactions and their dissociation constants. Those acids or bases which dissociate almost completely are strong acids or strong bases and those which dissociate to smaller extents are weak or moderately weak acids and weak bases.
Answer to Problem 9.84E
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
Explanation of Solution
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
The
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
(e)
Interpretation:
The dissociation reactions and
Concept introduction:
The strength of acids and bases can be determined on the basis of their dissociation reactions and their dissociation constants. Those acids or bases which dissociate almost completely are strong acids or strong bases and those which dissociate to smaller extents are weak or moderately weak acids and weak bases.
Answer to Problem 9.84E
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
Explanation of Solution
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
The
The dissociation reaction for the given weak acid,
The dissociation constant for the given reaction is,
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry for Today: General, Organic, and Biochemistry
- Ionization of the first proton from H2SeO4 is complete (H2SeO4 is a strong acid); the acid-ionization constant for the second proton is 1.2 102. a What would be the approximate hydronium-ion concentration in 0.150 M H2SeO4 if ionization of the second proton were ignored? b The ionization of the second proton must be considered for a more exact answer, however. Calculate the hydronium-ion concentration in 0.150 M H2SeO4, accounting for the ionization of both protons.arrow_forwardIn the following reaction of tetrafluoroboric acid, HBF4, with the acetate ion, C2H3O2, the formation of tetrafluoroborate ion, BF4 , and acetic acid, HC2H3O2 is favored. HBF4+C2H3O2BF4+HC2H3O2 Which is the weaker base, BF4 or acetate ion?arrow_forwardHow is acid strength related to the value of Ka? What is the difference between strong acids and weak acids (see Table 13-1)? As the strength of an acid increases, what happens to the strength of the conjugate base? How is base strength related to the value of Kb? As the strength of a base increases, what happens to the strength of the conjugate acid?arrow_forward
- . The concepts of acid-base equilibria were developed in this chapter for aqueous solutions (in aqueous solutions, water is the solvent and is intimately involved in the equilibria). However, the Brønsted-Lowry acid-base theory can be extended easily to other solvents. One such solvent that has been investigated in depth is liquid ammonia. NH3. a. Write a chemical equation indicating how HCl behaves as an acid in liquid ammonia. b. Write a chemical equation indicating how OH- behaves as a base in liquid ammonia.arrow_forwardConsider the following mathematical expressions. a. [H+] = [HA]0 b. [H+] = (Ka [HA]0)1/2 c. [OH] = 2[B]0 d. [OH] = (Kb [B]0)1/2 For each expression, give three solutions where the mathematical expression would give a good approximation for the [H+] or [OH]. [HA]0 and [B]0 represent initial concentrations of an acid or a base.arrow_forwardCalculate [CO32] in a 0.010-M solution of CO2 in water (usually written as H2CO3). If all the CO32 in this solution comes from the reaction HCO3(aq)H+(aq)+CO32(aq) what percentage of the H+ ions in the solution is a result of the dissociation of HCO3? When acid is added to a solution of sodium hydrogen carbonate (NaHCO3), vigorous bubbling occurs. How is this reaction related to the existence of carbonic acid (H2CO3) molecules in aqueous solution?arrow_forward
- The following illustration displays the relative number of species when an acid, HA, is added to water. a. Is HA a weak or strong acid? How can you tell? b. Using the relative numbers given in the illustration, determine the value for Ka and the percent dissociation of the acid. Assume the initial acid concentration is 0.20 M.arrow_forward12.63 For each of the following reactions, indicate the Bronsted-Lowrv acids and bases. What are the conjugate acid-base pairs? CN’(aq) + H2O(€) «=* HCN(aq) + OH’(aq) HCO}-(aq) + H,o+(aq) +* H2CO,(aq) + H,O(€) (C) CH,CtX)H(aq) + HS~(aq)i=i CH}COO"(aq) + H2S(aq)arrow_forwardConsider two separate aqueous solutions: one of a weak acid HA and one of HCl. Assuming you started with 10 molecules of each: a. Draw a picture of what each solution looks like at equilibrium. b. What are the major species in each beaker? c. From your pictures, calculate the Ka values of each acid. d. Order the following from the strongest to the weakest base: H2O, A. Cl. Explain your order.arrow_forward
- What is meant by the presence of a common ion? How does the presence of a common ion affect an equilibrium such as HNO2(aq) H+(aq) + NO2-(aq) What is an acidbase solution called that contains a common ion?arrow_forwardWhy can we ignore the contribution of water to the concentrations of H3O+ in the solutions of following acids: 0.0092 M HClO, a weak acid. 0.0810 M HCN, a weak acid. 0.120 M Fe(H2O)62+ a weak acid, Ka=1.6107 but not the contribution of water to the concentration of OH?arrow_forwardAre solutions of the following salts acidic, basic, or neutral? For those that are not neutral, write balanced equations for the reactions causing the solution to be acidic or basic. The relevant Ka, and Kb values are found in Tables 13-2 and 13-3. a. Sr(NO3)2 b. NH4C2H3O2 c. CH3NH3Cl d. C6H5NH3ClO2 e. NH4F f. CH3NH3CNarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning