Concept explainers
(a)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,
Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The volume and molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in equation (2).
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
The given molarity of
Substitute the molarity and millimoles of
Hence, the number of milliliters of
The number of milliliters of
(b)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,
Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The volume and molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in equation (2).
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
Hence, the number of millimoles of
The given molarity of
Substitute the molarity and millimoles of
Hence, the number of milliliters of
The number of milliliters of
(c)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,
Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The volume and molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in equation (2).
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
The given molarity of
Substitute the molarity and moles of
Hence, the number of milliliters of
The number of milliliters of
(d)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is calculated by the formula,
Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The number of moles a substance is given as,
Where,
•
•
The number of moles of
The above formula can be written as follows:
Equate equation (1) and (3).
The molar mass of
Substitute the molar mass and given mass of
Thus, the molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in above formula.
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
Hence, the number of millimoles of
The given molarity of
Substitute the molarity and moles of
Hence, the number of milliliters of
The number of milliliters of
(e)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,
Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The moles and volume of
The molarity of
Substitute the volume and moles in above formula.
Thus, the molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in above formula.
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
Hence, the number of millimoles of
The given molarity of
Substitute the molarity and moles of
Hence, the number of milliliters of
The number of milliliters of
(f)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,
Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The moles and volume of
The molarity of
Substitute the volume and moles in above formula.
Thus, the molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in above formula.
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
Hence, the number of millimoles of
The given molarity of
Substitute the molarity and moles of
Hence, the number of milliliters of
The number of milliliters of
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry for Today: General, Organic, and Biochemistry
- Three acid samples are prepared for titration by 0.01 M NaOH: 1 Sample 1 is prepared by dissolving 0.01 mol of HCl in 50 mL of water. 2 Sample 2 is prepared by dissolving 0.01 mol of HCl in 60 mL of water. 3 Sample 3 is prepared by dissolving 0.01 mol of HCl in 70 mL of water. a Without performing a formal calculation, compare the concentrations of the three acid samples (rank them from highest to lowest). b When the titration is performed, which sample, if any, will require the largest volume of the 0.01 M NaOH for neutralization?arrow_forwardAn acid is titrated with NaOH. The following beakers are illustrations of the contents of the beaker at various times during the titration. These are presented out of order. Note: Counter-ions and water molecules have been omitted from the illustrations for clarity. (a) (b) (c) (d) (e) a. Is the acid a weak or strong acid? How can you tell? b. Arrange the beakers in order of what the contents would look like as the titration progresses. c. For which beaker would pH = pKa? Explain your answer. d. Which beaker represents the equivalence point of the titration? Explain your answer. e. For which beaker would the Ka value for the acid not be necessary to determine the pH? Explain your answer.arrow_forwardDescribe in words the titration of an acid with a base. Be sure to use the terms equivalence point, indicator, and end point correctly.arrow_forward
- Consider a 1.50-g mixture of magnesium nitrate and magnesium chloride. After dissolving this mixture in water, 0.500 M silver nitrate is added dropwise until precipitate formation is complete. The mass of the white precipitate formed is 0.641 g. a. Calculate the mass percent of magnesium chloride in the mixture. b. Determine the minimum volume of silver nitrate that must have been added to ensure complete formation of the precipitate.arrow_forwardA 100.0-mL aliquot of 0.200 M aqueous potassium hydroxide is mixed with 100.0 mL of 0.200 M aqueous magnesium nitrate. a. Write a balanced chemical equation for any reaction that occurs. b. What precipitate forms? c. What mass of precipitate is produced? d. Calculate the concentration of each ion remaining in solution after precipitation is complete.arrow_forwardWhat mass of silver chloride can be prepared by the reaction of 100.0 mL of 0.20 M silver nitrate with 100.0 mL of 0.15 M calcium chloride? Calculate the concentrations of each ion remaining in solution after precipitation is complete.arrow_forward
- The equivalence point for the titration of a 25.00-mL sample of CSOH solution with 0.1062 M HNO3 is at 35.27 mL. What is the concentration of the CsOH solution?arrow_forwardHydrochloric acid (75.0 mL of 0.250 M) is added to 225.0 mL of 0.0550 M Ba(OH)2 solution. What is the concentration of the excess H+ or OH ions left in this solution?arrow_forwardWhat acid-base indicators, shown in Figure 18.24 would be suitable for the neutralization reaction whose titration curve is shown in Figure 18.30?Why?arrow_forward
- Consider 1.0 L of an aqueous solution that contains 0.10 M sulfuric acid to which 0.30 mole of barium nitrate is added. Assuming no change in volume of the solution, determine the pH, the concentration of barium ions in the final solution, and the mass of solid formed.arrow_forwardA solution contains Ca2+ and Pb2+ ions, both at a concentration of 0.010 M. You wish to separate the two ions from each other as completely as possible by precipitating one but not the other using aqueous Na2SO4 as the precipitating agent. (a) Which will precipitate first as sodium sulfate is added, CaSO4 or PbSO4? (b) What will be the concentration of the first ion that precipitates (Ca2+ or Pb2+) when the second, more soluble salt begins to precipitate?arrow_forwardLead(II) nitrate is added to four separate beakers that contain the following: aker 1 (sodium chloride) eaker 2 (sodium hydroxide) eaker 3 (sodium phosphate) eaker 4 (sodium sulfate) ter the addition of the lead(II) nitrate solution to each beaker, in which beaker(s) will a precipitate form? Use the general solubility rules given in Table 7.1 to guide you.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning