On a very Still morning, the surface temperature of a lake used to cool the condenser of a power plant is 30°C while the air temperature is 23°C with a relative humidity of 80%. Assume a surroundings temperature of 285 K. The lake is nominally circular in shape with a diameter of approximately 4 km. Determine the heat loss from the surface of the lake by radiation, free convection, and evaporation. This heat loss determines the capacity of the lake to cool the condenser. Justify why the heat transfer correlation you select is useful, even though R a L is outside of its specified range. Hint: See Problem 9.118.
On a very Still morning, the surface temperature of a lake used to cool the condenser of a power plant is 30°C while the air temperature is 23°C with a relative humidity of 80%. Assume a surroundings temperature of 285 K. The lake is nominally circular in shape with a diameter of approximately 4 km. Determine the heat loss from the surface of the lake by radiation, free convection, and evaporation. This heat loss determines the capacity of the lake to cool the condenser. Justify why the heat transfer correlation you select is useful, even though R a L is outside of its specified range. Hint: See Problem 9.118.
Solution Summary: The author explains the heat loss from the surface of the lake by radiation, free convection, and evaporation.
On a very Still morning, the surface temperature of a lake used to cool the condenser of a power plant is 30°C while the air temperature is 23°C with a relative humidity of 80%. Assume a surroundings temperature of 285 K. The lake is nominally circular in shape with a diameter of approximately 4 km. Determine the heat loss from the surface of the lake by radiation, free convection, and evaporation. This heat loss determines the capacity of the lake to cool the condenser. Justify why the heat transfer correlation you select is useful, even though
R
a
L
is outside of its specified range. Hint: See Problem 9.118.
reading is 0.4 mas SHOWN.
Assume h₁ = 0.4 m, h₂ = 0.5 m.
(a) Do you know the specific weight of mercury?
(b) Do you know the specific weight of gasoline?
(c) Do you know the specific weight of oil?
(a) YHg
=
133,000
(b) Ygas
= 6867
(c) Yoil =
8829
eTextbook and Media
Part 2
N/m³
N/m³
N/m³
A+
Gasoline
t
+B
Oil
-Mercury
Attempts: unlimited
Did you calculate the pressure difference between two locations using the correct specific weight?
Did you assume that the pressures in fluid are the same in a horizontal plane even though they are in different tubes?
Are the calculated pressures in a column of fluid always higher at lower elevations?
Did you account for the fact that the two horizontal tubes of the U-tube are above the ground?
Concepts: The pressure in a fluid is a function of the specific weight of the fluid and the height relative to a reference.
Pressure is constant in a horizontal plane of a continuous mass of fluid.
(a) What is the initial pressure difference? (PA-PB)
(b) What is…
Vector Mechanics for Engineers: Statics and Dynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.