(a)
The axis of spin in the second and final parts of the gymnast’s routine.
Introduction:
Center of mass is that virtual point of the body where its complete mass is assumed to be concentrated.
Explanation:
The center of mass of an average human body lies near about its navel.
Gymnast spins about the center of mass of her body (near about navel of her) in the second and final parts of her routine. In the second part, she rotates in the tuck posture (position at B). In the final part, she straightens out (position at C).
Conclusion:
Thus, gymnast spins about the center of mass of her body in the second and final parts of her routine.
(b)
To Rank: The moment of inertia in three given positions from the greatest to the least.
The order of moment of inertia is,
Introduction:
The moment of inertia is defined as the property of body which resist the angular motion of the body. It is directly proportional to the product of mass and square of distance from the axis of rotation.
Where,
Explanation:
The initial position of the gymnast was at point
In overall process, her mass did not change but distance of center of mass (
If mass of object does not change then moment of inertia is directly proportional to the square of the distance from axis of rotation.
Therefore, the order of moment of inertia in decreasing order is:
Conclusion:
The moment of inertia was maximum at position
(c)
The order of angular velocity in three given positions from the greatest to the least.
Introduction:
The moment of inertia is defined as the property of body which resist the angular motion of the body. It is directly proportional to the product of mass and square of distance from the axis of rotation.
Where,
The angular momentum for a rigid body rotating about an axis is defined as the product of moment of inertia and angular velocity (
Where,
According to conservation of momentum when no external torque acting on the system then the angular momentum of the rigid body will conserve.
Therefore,
Explanation:
The initial position of the gymnast was at point
In overall process her mass did not change but distance of center of mass (
If mass of object does not change, then moment of inertia is directly proportional to the square of the distance from axis of rotation.
Therefore, the order of moment of inertia in decreasing order is:
And according to conservation of momentum,
When moment of inertia decreases, the angular velocity of rigid body should increase to make the product constant.
Thus, the order of angular velocity of gymnast at different points in decreasing order is:
Conclusion:
The angular velocity is maximum at point
(a)
Answer to Problem 89A
The order of moment of inertia is,
Explanation of Solution
Introduction:
Center of mass is that virtual point of the body where its complete mass is assumed to be concentrated.
The center of mass of an average human body lies near about its navel.
Gymnast spins about the center of mass of her body (near about navel of her) in the second and final parts of her routine. In the second part, she rotates in the tuck posture (position at B). In the final part, she straightens out (position at C).
Conclusion:
Thus, gymnast spins about the center of mass of her body in the second and final parts of her routine.
(b)
To Rank: The moment of inertia in three given positions from the greatest to the least.
(b)
Answer to Problem 89A
The order of moment of inertia is,
Explanation of Solution
Introduction:
The moment of inertia is defined as the property of body which resist the angular motion of the body. It is directly proportional to the product of mass and square of distance from the axis of rotation.
Where,
The initial position of the gymnast was at point
In overall process, her mass did not change but distance of center of mass (
If mass of object does not change then moment of inertia is directly proportional to the square of the distance from axis of rotation.
Therefore, the order of moment of inertia in decreasing order is:
Conclusion:
The moment of inertia was maximum at position
(c)
The order of
(c)
Answer to Problem 89A
Explanation of Solution
Introduction:
The moment of inertia is defined as the property of body which resist the angular motion of the body. It is directly proportional to the product of mass and square of distance from the axis of rotation.
Where,
The
Where,
According to conservation of momentum when no external torque acting on the system then the angular momentum of the rigid body will conserve.
Therefore,
The initial position of the gymnast was at point
In overall process her mass did not change but distance of center of mass (
If mass of object does not change, then moment of inertia is directly proportional to the square of the distance from axis of rotation.
Therefore, the order of moment of inertia in decreasing order is:
And according to conservation of momentum,
When moment of inertia decreases, the angular velocity of rigid body should increase to make the product constant.
Thus, the order of angular velocity of gymnast at different points in decreasing order is:
Conclusion:
The angular velocity is maximum at point
Chapter 9 Solutions
Glencoe Physics: Principles and Problems, Student Edition
Additional Science Textbook Solutions
Campbell Essential Biology (7th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Cosmic Perspective Fundamentals
Anatomy & Physiology (6th Edition)
Campbell Biology (11th Edition)
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- pls helparrow_forwardpls helparrow_forward6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forward
- No chatgpt plsarrow_forwardWhat is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forwardՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON