
(a)
Interpretation:
The physical state (s) of water is (are) present in the flask needs to be identified.
Concept introduction:
If partial pressure of water vapor at the given temperature and volume is less than
Here, n is number of moles.
P represents pressure, V represents volume, T and R represents temperature and gas constant respectively.

Answer to Problem 77QAP
Two physical states, liquid and vapor are present in the flask.
Explanation of Solution
Given:
Volume = 10.0 L
Mass of hydrogen gas = 0.400 g
Mass of oxygen gas = 3.2 g
Reaction:
1 mole of
1 mole of
The given reaction in the question is given below:
In the above reaction,
Once
Given,
Volume ( V)
Temperature ( T)
Calculate moles ( n) of
The volume is converted from L to
The temperature is converted into Kelvin as follows:
Put all values in equation (1).
Therefore, P value is greater than
(b)
Interpretation:
The final pressure in the flask is to be determined.
Concept introduction:
Ideal
Here, n is number of moles.
P represents pressure, V represents volume, T and R represents temperature and gas constant respectively.

Answer to Problem 77QAP
Final pressure in the flask is
Explanation of Solution
Given:
Volume = 10.0 L
Mass of hydrogen gas = 0.400 g
Mass of oxygen gas = 3.2 g
Reaction:
Atomic mass of hydrogen is 1 amu and oxygen is 16 amu. Therefore, molar mass of
1 mole of
1 mole of
The given reaction in the question is given below:
In this reaction,
Once
Calculate number of moles
Given,
Volume ( V)
Temperature ( T)
Number of moles n
The volume is converted from L to
The temperature is converted into Kelvin as follows:
Since,
In previous case assuming that all water is in vapor phase. Exceed the saturation pressure some of the water will get condensed and remaining vapor will have just the pressure equal to the partial pressure, i.e.
Hence, the final pressure in the flask is
(c)
Interpretation:
The pressure in the flask is to be determined, if
Concept introduction:
Ideal gas law representation is given below.
Here, n is number of moles.
P represents pressure, V represents volume, T and R represents temperature and gas constant respectively.

Answer to Problem 77QAP
The pressure in the flask is
Explanation of Solution
Atomic mass of hydrogen is 1 amu and oxygen is 16 amu. Therefore, molar mass of
1 mole of
1 mole of
The given reaction in the question is given below:
In the above reaction,
Once
If
Given,
Volume ( V)
Temperature ( T)
Calculate number of moles ( n) of
The volume is converted from L to
The temperature is converted into Kelvin as follows:
Put all values in equation (1) to calculate partial pressure of hydrogen gas.
Converting the values of pressure from Pa to mm Hg,
If
The value of pressure is converted into atm as follows:
Therefore, pressure in the flask is
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry: Principles and Reactions
- Identify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forwardIdentify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forwardInstructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forward
- a. H3C CH3 H, 1.0 equiv. Br2arrow_forwardH3C. H3C CH 3 CH 3 CH3 1. LDA 2. PhSeCl 3. H2O2arrow_forwardPlease predict the products for each of the following reactions: 1.03 2. H₂O NaNH, 1. n-BuLi 2. Mel A H₂ 10 9 0 H2SO4, H₂O HgSO4 Pd or Pt (catalyst) B 9 2 n-BuLi ♡ D2 (deuterium) Lindlar's Catalyst 1. NaNH2 2. EtBr Na, ND3 (deuterium) 2. H₂O2, NaOH 1. (Sia)2BH с Darrow_forward
- in the scope of ontario SCH4U grade 12 course, please show ALL workarrow_forwardIs the chemical reaction CuCl42-(green) + 4H2O <==> Cu(H2O)42+(blue) + 4Cl- exothermic or endothermic?arrow_forwardIf we react tetraethoxypropane with hydrazine, what is the product obtained (explain its formula). State the reason why the corresponding dialdehyde is not used.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





