To determine the theoretical yield of iron (II) sulphide. Concept Introduction: A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction. The limiting reactant in a particular reaction has due to following properties: Limiting reactant completely reacted in a particular reaction. Limiting reactant determines the amount of the product in mole. The theoretical yield of iron (II) sulphide is 8.26 g F e S . Theoretical yield is also known as calculated yield. Theoretical yield is the amount of product which is theatrically calculates by the amount of limiting agent. It is the maximum amount of product which is formed in any reaction. Other name of actual yield is observed yield. The percentage yield is calculated by the actual or observed experimental yield divided by the theoretical yield and multiplied by 100. The percentage yield can be calculates by the use of following expression: Actual yield or given yield Theoretical yield or calculated yield × 100% Theoretical yield is the greatest amount of a product possible from a reaction, when assume that the reaction goes to 100% competition. The balance equation for the calcium and oxalate ions is as follows: F e ( s ) + S ( s ) → F e S ( s ) Given: Amount of F e -=5.25 g Amount of S = 12.7 g Calculation: Number of moles of F e and S are calculated as follows: N u m b e r o f m o l e s = m a s s i n g m o l a r m a s s = 5.25 g 55 .845 g / m o l = 0.094 m o l e s F e Number of moles = mass in g molar mass = 12.7 g 32 .065 g / m o l = 0.3966 m o l e s S In the above reaction Fe is a limiting reagent because it reacted completely. Now calculated the theoretical amount of F e S as follows: 0.094 m o l e s F e × 1.00 m o l e F e S 1.00 m o l e s F e × 87 .91 g F e S 1.00 m o l e F e S = 8.26 g F e S . The theoretical yield of iron (II) sulphide is 8.26 g F e S .
To determine the theoretical yield of iron (II) sulphide. Concept Introduction: A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction. The limiting reactant in a particular reaction has due to following properties: Limiting reactant completely reacted in a particular reaction. Limiting reactant determines the amount of the product in mole. The theoretical yield of iron (II) sulphide is 8.26 g F e S . Theoretical yield is also known as calculated yield. Theoretical yield is the amount of product which is theatrically calculates by the amount of limiting agent. It is the maximum amount of product which is formed in any reaction. Other name of actual yield is observed yield. The percentage yield is calculated by the actual or observed experimental yield divided by the theoretical yield and multiplied by 100. The percentage yield can be calculates by the use of following expression: Actual yield or given yield Theoretical yield or calculated yield × 100% Theoretical yield is the greatest amount of a product possible from a reaction, when assume that the reaction goes to 100% competition. The balance equation for the calcium and oxalate ions is as follows: F e ( s ) + S ( s ) → F e S ( s ) Given: Amount of F e -=5.25 g Amount of S = 12.7 g Calculation: Number of moles of F e and S are calculated as follows: N u m b e r o f m o l e s = m a s s i n g m o l a r m a s s = 5.25 g 55 .845 g / m o l = 0.094 m o l e s F e Number of moles = mass in g molar mass = 12.7 g 32 .065 g / m o l = 0.3966 m o l e s S In the above reaction Fe is a limiting reagent because it reacted completely. Now calculated the theoretical amount of F e S as follows: 0.094 m o l e s F e × 1.00 m o l e F e S 1.00 m o l e s F e × 87 .91 g F e S 1.00 m o l e F e S = 8.26 g F e S . The theoretical yield of iron (II) sulphide is 8.26 g F e S .
Solution Summary: The author explains how to determine the theoretical yield of iron (II) sulphide.
To determine the theoretical yield of iron (II) sulphide.
Concept Introduction:
A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction.
The limiting reactant in a particular reaction has due to following properties:
Limiting reactant completely reacted in a particular reaction.
Limiting reactant determines the amount of the product in mole.
The theoretical yield of iron (II) sulphide is 8.26gFeS.
Theoretical yield is also known as calculated yield. Theoretical yield is the amount of product which is theatrically calculates by the amount of limiting agent. It is the maximum amount of product which is formed in any reaction.
Other name of actual yield is observed yield.
The percentage yield is calculated by the actual or observed experimental yield divided by the theoretical yield and multiplied by 100.
The percentage yield can be calculates by the use of following expression:
Actual yield or given yield Theoretical yield or calculated yield ×100%
Theoretical yield is the greatest amount of a product possible from a reaction, when assume that the reaction goes to 100% competition.
The balance equation for the calcium and oxalate ions is as follows:
Fe(s)+S(s)→FeS(s)
Given:
Amount of Fe -=5.25 g
Amount of S = 12.7 g
Calculation:
Number of moles of Fe and S are calculated as follows:
Numberofmoles=massingmolarmass=5.25g55.845 g/mol=0.094molesFeNumber of moles=mass in gmolarmass=12.7g32.065 g/mol=0.3966molesS
In the above reaction Fe is a limiting reagent because it reacted completely. Now calculated the theoretical amount of FeS as follows:
" is
The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3
best described as a hybrid of several contributing resonance forms, two of which
are shown here.
HO
:0:
:Ö:
HO
+
Bicarbonate is crucial for the control of body pH (for example, blood pH:
7.4). A more self-indulgent use is in baking soda, where it serves as a
source of CO2 CO₂ 2 gas, which gives bread and pastry their fluffy
constituency.
(i) Draw at least one additional resonance form.
=
(ii) Using curved "electron-pushing" arrows, show how these Lewis structures may
be interconverted by movement of electron pairs. (iii) Determine which form or
forms will be the major contributor(s) to the real structure of bicarbonate,
explaining your answer on the basis of the criteria in Section 1-5.
Which of these is the best use of a volumetric flask?
measuring how much liquid it contains
delivering a precise amount of liquid to another container
holding solutions
making solutions of precise concentration
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell