
Concept explainers
Repeat Problem 9.4 for an antenna with
Determine the following:
- (a) The direction of maximum radiation.
- (b) Directivity.
- (c) Beam solid angle.
- (d) Half-power beamwidth in the x-z plane.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
- a. A silicon sample maintained at room temperature is uniformly doped with ND=10¹6/cm³ donors. Calculate the resistivity of the sample. b. The silicon sample of part (a) is "compensated" by adding NA=1016/cm³ acceptors. Calculate the resistivity of the compensated sample. c. Compute the resistivity of intrinsic silicon at room temperature. d. A 500 resistor is to be made from a bar-shaped piece of n-type Si. The bar has a cross sectional area of 102 cm² and a current-carrying length of 1 cm. Determine the doping required. μn or μp (cm²/V-sec) 1000 Electrons Holes NA or ND (cm³) 1x1014 Мет Mp (cm2V-sec) 1358 461 2 1357 460 100 5 1352 459 1 x 1015 1345 458 2 1332 455 5 1298 448 1 x 1016.... 1248 437 2 1165 419 5 986 378 1 x 1017 801 331 10 1014 1015 1016 NA or ND (cm-³) 1017 1018 Silicon T = 300 Karrow_forward4. Two different silicon samples maintained at 300K are characterized by the energy band diagrams. Answer the questions that follow after choosing a specific diagram for analysis. a) Do equilibrium conditions prebail? How do you know? b) Sketch the electrostatic potential (V) inside the semiconductor as a function of x. c) Sketch the electric field (ε) inside the semiconductor as a function of x. EF Ec E₁ Ev E₁ EF Ev X X 0 L/2 L 0 L/2 L 3.arrow_forwardSee BOTH images to answer correctly thxarrow_forward
- a. An average hole drift velocity of 103 cm/sec results when 2V is applied across a 1 cm long semiconductor bar. What is the hole mobility inside the bar? b. Name the two dominant carrier scattering mechanisms in nondegeneratedly doped semiconductors of device quality. c. For a give semiconductor the carrier mobilities in intrinsic material are (choose one: higher than, lower than, the same as) those in heavily doped material. Briefly explain why the mobilites in intrinsic material are (chosen answer) those in heavily doped material.arrow_forwardFind the steady-state expression for vo(t) in the following circuit if vg (t) = 64 cos(8000t) V. 31.25 nF HE + Vg + - 2 ΚΩ Vo 500 mHarrow_forwardUse PSpice to model the differential amplifier circuit shown in Fig. 4 in DIBO mode (double input balanced output). Use 2N3904 BJTs and use appropriate values for resistors (you can choose the values that will not lead to excessive gain and saturation) to demonstrate that the circuit provides differential amplification. Use Vcc = 5 and Vee = 5. Use a pair of sinusoids with opposing polarity (180 degree phase shift) as the inputs to the differential amplifier. Recall from the theory ic is needed to compute re. Make sure that the conditions set in the analysis of DIBO circuit are satisfied. Assume Rs1 = Rs2 50 Ω. Does your simulation match the theoretical gain? Explain any differences.arrow_forward
- Derive the expression for the voltage gain of DIBO differential amplifier using AC analysis.arrow_forwardConsider the following circuit. + - 1.2 ΚΩ ig (1) vo ΣΕ ΚΩ € 50 nF 200 mH a) [6 pts] The frequency of the source current in the circuit is adjusted until vo is in phase with ig. What is the value of o in radians per second? (Hint: if vo is in phase with ig, the phase of total impedance must be zero (Ztot = vol ig), which means the phase of total admittance is zero. It will be easy to work with admittance in this question because the components are in parallel.) b) [2 pts] What is the total impedance at the frequency found in (a)? c) [2 pts] Ifig=2.5 cosoot mA (where o is the frequency found in [a]), what is the steady-state expression for vo?arrow_forwardConsider the following circuit with ig (t) = 200 cos(5000t) mA. 240 ΩΣ + 80 2: 2.5 µF 48 mH a) [3 pts] Obtain and draw the frequency-domain circuit. b) [3 pts] Use the current division to find the current flowing through the 240 2 resistor. c) [3 pts] Then calculate Vo in phasor form. d) [1 pts] Write the steady-state expression for vo(t).arrow_forward
- Q-Draw a sample and hold electronic circuit using op-amp then explain its operation. I hope the solution is from a human being and not from intelligencearrow_forwardDesign an AC-coupled (input and output) amplifier with a gain of -8 which has identical 3 dB corner frequencies of 10 kHz for high pass coupling at the input and output. Assume a power supply of 5 volts.arrow_forwardFind Laplace inverse for -25 -1 e S-1arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





