MECHANICS OF MATERIALS
MECHANICS OF MATERIALS
11th Edition
ISBN: 9780137605521
Author: HIBBELER
Publisher: RENT PEARS
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 1RP
To determine

The principal stresses at point A.

Expert Solution & Answer
Check Mark

Answer to Problem 1RP

The principal stresses at point A (σ1) and (σ2) are 119psi_ and 119psi_.

Explanation of Solution

Calculate the normal stress (σA) acting at point A using the relation:

σA=MyzIy (1)

Here, My is the moment in y-direction, z is the distance in z-direction from centroid to point A, and Iy is the moment of inertia.

Sketch the internal forces and moment in free body diagram at point A as shown in Figure 1.

MECHANICS OF MATERIALS, Chapter 9, Problem 1RP , additional homework tip  1

Apply Equilibrium equations to find the value of moment at point A.

Sum of moments in y-direction is equal to 0.

ΣMy=0My(20×10)=0My=200lbin

Sum of moments in x-direction is equal to 0.

ΣMx=0Tx+(20×12)=0Tx=240lbin

Sum of forces in z-direction is equal to 0.

ΣVz=0Vz20=0Vz=20lb

Find the moment of inertia of the section (I):

Outer radius of the pipe is 1.5 in. and the inner radius of the pipe is 1.375 in.

I=π4[(1.5in)4(1.375in)4]=1.1687in4

Find the polar moment of inertia of the section (J):

J=π2[(1.5in)4(1.375in)4]=2.3374in4

Sketch the cross section at point A as shown in Figure 2.

MECHANICS OF MATERIALS, Chapter 9, Problem 1RP , additional homework tip  2

Find the first moment of area at point A (QA)z using the relation:

(QA)z=Σy¯'A' (2)

Here, y¯' is the centroid distance to point A and A' is the area from centroid to point A.

Refer to Figure 2.

(QA)z=4×1.5in.3π[12×π×(1.5in.)2]4×1.375in.3π[12×π×(1.375in.)2]=0.51693in3.

Substitute 200lbin for My, 0 for z, and 1.1687in4 for Iy in Equation (1).

σA=(200lbin)(0)1.1687in4=0

Find the shear stress (τA) at point A using the relation:

τA=(VQIt)zTρJ (3)

Substitute 20lb for Vz, 0.51693in3 for (QA)z, 1.1687in4 for I, 2×0.125in. for t, 240lbin for T, 1.5in. for ρ, and 2.3374in4 for J in Equation (3).

τA=(20lb)(0.51693in3)(1.1687in4)2(0.125in.)(240lbin)(1.5in.)(2.3374in4)=118.6psi

Sketch the state of stress at point A as shown in Figure 3.

MECHANICS OF MATERIALS, Chapter 9, Problem 1RP , additional homework tip  3

Refer to Figure 3.

The value of normal stresses are σx=0 and σz=0.

The value of shear stress is τxz=118.6psi.

Find the principal stresses (σ1) and (σ2) at point A:

σ1,2=σx+σz2±(σxσz2)2+τxz2 (4)

Substitute 0 for σx, 0 for σz, and 118.6psi for τxz in Equation (4).

σ1,2=0±0+(118.6)2=0±118.6σ1=0+118.6=118.6psi

σ1119psiσ2=0118.6=118.6psi119psi

Therefore, the principal stresses (σ1) and (σ2) at point A are 119psi_ and 119psi_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider the heat engine operating at steady state between the two thermal reservoirs shown at the right while producing a net power output of 700 kW. If 1000 kW of heat (Q̇H) is transferred to the heat engine from a thermal reservoir at a temperature of TH = 900 K, and heat is rejected to a thermal reservoir at a temperature of TL = 300 K, is this heat engine possible?      Can you answer this question for me and show all of the work
1.12 A disk of constant radius r is attached to a telescoping rod that is extending at a constant rate as shown in Fig. P1.12. Both the disk and the rod are rotating at a constant rate. Find the inertial velocity and acceleration of point P at the rim of the disk. ท2 L 0 SS P α e 0 O' êL Fig. P1.12 Rotating disk attached to telescoping rod. 60 LL
Two different options A and B with brake pads for disc brakes are connected to the rope drum. The diameter of the rope drum is 150 mm. What distance must the pads B be at from the center of rotation to cover the same distance as A?A                                                                                 B- Width 50 mm                                                          - Width 60 mm- Evidence center 120mm                                        - Construction power 900 N   from rotation center.- Maintains a weight of 200 kgwhen the installation force is 1.4kN (μ is missing from the data)M=μF(Ry-Ri)Right answer R=187 mm

Chapter 9 Solutions

MECHANICS OF MATERIALS

Ch. 9.3 - The stress along two planes at a point is...Ch. 9.3 - The state of stress at a point in a member is...Ch. 9.3 - The wood beam is subjected to a load of 12 kN. If...Ch. 9.3 - The internal loadings at a section of the beam are...Ch. 9.3 - Solve Prob.925 for point B. 925. The internal...Ch. 9.3 - Solve Prob.925 for point C. 925. The internal...Ch. 9.3 - It is subjected to a torque of 12 kip in. and a...Ch. 9.3 - A paper tube is formed by rolling a cardboard...Ch. 9.3 - Solve Prob.931 for the normal stress acting...Ch. 9.3 - Determine the principal stresses in the...Ch. 9.3 - The shaft has a diameter d and is subjected to the...Ch. 9.4 - Use Mohrs circle to determine the normal stress...Ch. 9.4 - Also, find the corresponding orientation of the...Ch. 9.4 - Draw Mohrs circle and determine the principal...Ch. 9.4 - Determine the principal stresses at a point on the...Ch. 9.4 - Determine the principal stresses at point A on the...Ch. 9.4 - Point A is just below the flange.Ch. 9.4 - Mohrs circle for the state of stress is shown in...Ch. 9.4 - Determine (a) the principal stresses and (b) the...Ch. 9.4 - Determine the equivalent state of stress if an...Ch. 9.4 - Draw Mohrs circle that describes each of the...Ch. 9.4 - Draw Mohrs circle trial describes each of the...Ch. 9.4 - Determine (a) the principal stresses and (b) the...Ch. 9.4 - Determine (a) the principal stresses and (b) the...Ch. 9.4 - Draw Mohrs circle that describes each of the...Ch. 9.4 - The grains of wood in the board make an angle of...Ch. 9.4 - A spherical pressure vessel has an inner radius of...Ch. 9.4 - The cylindrical pressure vessel has an inner...Ch. 9.4 - If the box wrench is subjected to the 50 lb force,...Ch. 9.4 - If the box wrench is subjected to the 50-lb force,...Ch. 9.5 - Draw the three Mohrs circles that describe each of...Ch. 9.5 - Draw the three Mohrs circles that describe the...Ch. 9.5 - Determine the principal stresses and the absolute...Ch. 9.5 - The solid shaft is subjected to a torque, bending...Ch. 9.5 - The frame is subjected to a horizontal force and...Ch. 9 - Prob. 1RPCh. 9 - The steel pipe has an inner diameter of 2.75 in....Ch. 9 - Determine the equivalent state of stress If an...Ch. 9 - The crane is used to support the 350-lb load....Ch. 9 - Determine the equivalent state of stress on an...Ch. 9 - The propeller shaft of the tugboat is subjected to...Ch. 9 - Determine the principal stresses in the box beam...Ch. 9 - Determine (a) the principal stresses and (b) the...Ch. 9 - Determine the stress components acting on the...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Pressure Vessels Introduction; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=Z1J97IpFc2k;License: Standard youtube license