Concept explainers
RIPs as Cancer Drugs Researchers are taking a page from the structure-function relationship of RIPs in their quest for cancer treatments. The most toxic RIPs, remember, have one domain that interferes with ribosomes, and another that carries them into cells. Melissa Cheung and her colleagues incorporated a peptide that binds to skin cancer cells into the enzymatic part of an RIP, the E. coli Shiga-like toxin. The researchers created a new RIP that specifically kills .skin cancer cells, which are notoriously resistant to established therapies. Some of their results are shown in FIGURE 9.17.
FIGURE 9.17 Effect of an engineered RIP on cancer cells. The model on the left shows the enzyme portion of E. coli Shiga-like toxin engineered to carry a small sequence of amino acids (in blue) that targets skin cancer cells. (Red indicates the active site.) The graph on the right shows the effect of this engineered RIP on human cancer cells of the skin (); breast () liver (); and prostate ().
Which cells had the greatest response to an increase in concentration of the engineered RIP?
To determine: The type of cells that had the greatest response to an increase in the concentration of the engineered RIP.
Introduction: Ribosome-inactivating proteins (RIPs) inactivate the ribosomes and prevent protein synthesis in a cell. The toxic RIPs have a domain that makes them enter into the cell and another domain that interferes with the ribosome. They have antiviral and anticancer properties and are used to design drugs for HIV and cancer.
Answer to Problem 1DAA
Correct answer: The greatest response in the form of fall in cell’s survival percentage with an increase in the concentration of engineered RIP is seen in the skin cancer cells.
Explanation of Solution
As given in the problem statement, Researcher M and her colleagues incorporated a peptide into the enzymatic part of a RIP, the E. coli Shiga-like toxin. The peptide specifically binds to the skin cancer cells, and thus, the newly synthesized RIP kills the skin cancer cells.
Refer Fig. 9.17, “Effect of an engineered RIP on cancer cells”, in the textbook. The model shown on the left indicates a blue-colored enzyme region of E. coli Shiga-like toxin that is engineered to carry the peptide sequence specific for the skin cancer cells. The red color indicates the active site of RIP.
The graphical representation that is shown in Fig. 9.17 on the right side indicates the effect of the engineered RIP on different human cancer cells indicated by different colors and shapes. They include skin, breast, liver, and prostate cancer cells with red, blue, brown, and green color, respectively. The concentration of RIP (µg/liter) is plotted with the percentage of cell survival. As shown in the graph, as the concentration of RIP increases, there is a significant drop in the skin cancer cells percentage. It reaches to zero at RIP concentration of 10 µg/liter. In the case of the other cancer cells, there is lesser variability.
Thus, the greatest response in the form of fall in cell’s survival percentage with an increase in the concentration of engineered RIP is seen in the skin cancer cells.
Want to see more full solutions like this?
Chapter 9 Solutions
Biology: The Unity and Diversity of Life (MindTap Course List)
Additional Science Textbook Solutions
Fundamentals of Physics Extended
Laboratory Manual For Human Anatomy & Physiology
SEELEY'S ANATOMY+PHYSIOLOGY
Microbiology Fundamentals: A Clinical Approach
Human Physiology: An Integrated Approach (8th Edition)
- In the: Inhibition of splicing by ribozymes Explain: (a) What is the process affected? (b) What is the Effect on the process? (c) Does it affect prokaryotes, eukaryotes or both?arrow_forwardIn the: Mutation of the 28S RNA preventing the binding of the 40S with 60S ribosomes Explain: (a) What is the process affected? (b) What is the Effect on the process? (c) Does it affect prokaryotes, eukaryotes or both?arrow_forwardTrue or False. 1. a.) RNA polymerase decodes mRNA so the ribosome can make proteins. b.) Only coding RNA can interact with the ribosome. c.) The ribosome is composed of both protein and ncRNA. d.)The ncRNA components of the ribosome behave as a ribozyme. Pick one of the FALSE statements from the 4 previous questions and explain why it is incorrect.arrow_forward
- You plan to synthesize a peptide to be used as a vaccine to treat melanoma, a particularly aggressive form of skin cancer. Normally, gp100, a protein on the surface of melanocytes, activates cell growth when it is bound by its ligand. Activation of the growth pathway depends on the presence of threonine in the ligand. The effective peptide vaccine will mimic the natural ligand, but won’t cause cell growth and division. Below is the sequence of the natural ligand: LDMKTAG In order to ensure your newly designed peptide vaccine does not cause cell growth upon binding, you must substitute the Threonine residue at position 5. What amino acid would you replace it with, bearing in mind that the peptide should still be similar enough to bind to the gp100 protein in the surface of melanocytes. Explain your choice. Your vaccine will be administered as a topical cream, and you require your peptide to have an overall neutral charge in order to be functional. At what pH should you formulate…arrow_forwardI need an example to study for an testarrow_forwardMolecular biology, Please explain in detailarrow_forward
- The previously accepted model of the chloramphenicol action was that it inhibited all ribosomes equally. Why were the authors of the Marks, 2016 paper skeptical of this model? Choose all that are correct. Because they had observed that certain bacteria were resistant to chloramphenicol, and this proves that chloramphenicol stalls ribosomes at certain sites within those bacteria. Because certain MRNA templates had been observed to be inhibited by chloramphenicol more strongly than others Because chloramphenicol induces expression of chloramphenicol resistance proteins through translational arrest at specific codons in the leader ORFS of chloramphenicol resistance genes, which suggests there is preferential stalling at certain sites. Because chloramphenicol induces expression of chloramphenicol resistance proteins - therefore, these proteins must be able to be translated during chloramphenicol treatment. Because chloramphenicol binds the decoding center of the 30S subunit, and there are…arrow_forwardeading list Cells have oligosaccharides displayed on their cell surface that are important for cell-cell recognition. Your friend has discovered a transmembrane glycoprotein, GP1, on a pathogenic fungal cell that is recognized by human immune cells. He decides to purify large amounts of GP1 by expressing it in bacteria. To his purified protein he then adds a branched 14-sugar oligosaccharide to the asparagine of the only Asn-X- Ser sequence found on GP1. Unfortunately, immune cells do not seem to recognize this synthesized glycoprotein. What's a likely explanation for this problem? O The oligosaccharide needs to be further modified before it's mature. O The oligosaccharide should've been added one sugar at a time. O The oligosaccharide needs a disulfide bond. O The oligosaccharideehould've been added to the serine instead of the asparagine.arrow_forwardMany blood clotting proteins undergo a post-translational modification in which specific glutamic acid residues (Glu) in the protein are converted to gamma-carboxyglutamic acid residues (Gla). See reaction scheme below. An example is the blood clotting protein Factor IX, which has 12 Glu in its N-terminus converted to Gla. This modification gives Factor IX the ability to bind calcium and phospholipid membranes. Bacteria do not have the enzyme required to convert Glu to Gla and therefore Factor IX proteins expressed in bacteria would not have the proper modifications. How might you engineer the translational apparatus of a bacterial cell line so that it produces Factor IX with Gla in the appropriate positions. How would you ensure that only the 12 Glu in Factor IX that are normally converted to Gla and not just all Glu (Limit 5-6 senetnces)?arrow_forward
- The steroid progesterone has an important role in the female reproductive system. Researchers interested in studying membrane progestin receptors (MPRS) developed a method to produce and purify the protein in active form. First, the researchers devised a way to prepare a specific MPR known as hMPRA using the machinery of yeast cells. In order to facilitate purification and identification in later studies, they manipulated the yeast cells so that they attached two different tags to the C-terminal end of the protein. The first tag, Compound 1, is a peptide sequence that acts as an epitope, part of a much larger peptide sequence that is recognized by the immune system. The second sequence consisted of six consecutive histidine residues (His). This sequence binds tightly to Ni2+ cations. In chromatography, (His), tag labeled proteins can be eluted from Ni²+. supported columns by adding a small molecule to the eluent that mimics the side chain of histidine.…arrow_forwardThe steroid progesterone has an important role in the female reproductive system. Researchers interested in studying membrane progestin receptors (MPRs) developed a method to produce and purify the protein in active form. First, the researchers devised a way to prepare a specific MPR known as hMPRA using the machinery of yeast cells. In order to facilitate purification and identification in later studies, they manipulated the yeast cells so that they attached two different tags to the C-terminal end of the protein. The first tag, Compound 1, is a peptide sequence that acts as an epitope, part of a much larger peptide sequence that is recognized by the immune system. The second sequence consisted of six consecutive histidine residues (His). This sequence binds tightly to Ni2+ cations. In chromatography, (His), tag labeled proteins can be eluted from Ni²+- supported columns by adding a small molecule to the eluent that mimics the side chain of histidine. After preparing hMPRA, the…arrow_forwardMCQarrow_forward
- Biology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax