Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 18PCE
Air Bag Safety If a driver makes contact with a steering wheel during a 35-mph crash, she comes to rest in about Δt = 15 ms. If, during an identical crash, the driver makes contact with an air bag, she comes to rest in about Δt = 110 ms. What is the ratio Fsw/Fab of the force exerted by the steering wheel to the force exerted by the air bag on the driver?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A block attains a velocity of 12 m/sec in a distance of 40 m starting from rest. Determine
the coefficient of kinetic frietion between the block and the floor.
250 N
P-125 N
PROBLEMI
The 260kg crate shown in the figure rests on a horizontal surface for which the coefficient of kinetic friction is 025. If the crate is subjected to a 400 N towing force as
shown determine the velocity of the crate in 5 s starting from rest
PROBLEM 2
PROBLEM 3
The 80 kg block A shown in Figure is released from rest If the masses of the puleys and the cord are neglected determine the speed of the 12 kg block B in 38
m₁
P = 400 N
IIA
8 = 30°
30°
Consider the masses m, 20 kg and m, 18 kg in the system represented by the figure below. If the coefficient of friction is Of and the inclination angle is 30°, find the
acceleration of the system and the tension in the cord joining two masses
Datum
m₂
View Policies
Current Attempt in Progress
The initially stationary 14-kg block is subjected to the time-varying force whose magnitude Pis shown in the plot. The 30° angle
remains constant. Determine the block speed at (a) t - 1.8 s and (b) t- 6.4 s.
121
14 kg
30
SM0.52
H0.40
7.8
Answers:
(a) Att- 1.8 s, v-
m/s
i
(b) At t- 6.4 s, v-
m/s
Chapter 9 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 9.1 - Enhance Your Understanding (Answers given at the...Ch. 9.2 - Enhance Your Understanding (Answers given at the...Ch. 9.3 - Enhance Your Understanding (Answers given at the...Ch. 9.4 - Enhance Your Understanding (Answers given at the...Ch. 9.5 - Prob. 5EYUCh. 9.6 - Enhance Your Understanding (Answers given at the...Ch. 9.7 - Enhance Your Understanding (Answers given at the...Ch. 9.8 - Prob. 8EYUCh. 9 - If you drop your Keys, their momentum increases as...Ch. 9 - By what factor does an objects kinetic energy...
Ch. 9 - A system of particles is known to have zero...Ch. 9 - A system of particles is known to have zero...Ch. 9 - On a calm day you connect an electric fan to a...Ch. 9 - Crash statistics show that it is safer to be...Ch. 9 - (a) As you approach a stoplight, you apply the...Ch. 9 - An object at rest on a frictionless surface is...Ch. 9 - (a) Can two objects on a horizontal frictionless...Ch. 9 - Two cars collide at an intersection. If the cars...Ch. 9 - At the instant a bullet is fired from a gun, the...Ch. 9 - Prob. 12CQCh. 9 - In the classic movie The Spirit of St. Louis,...Ch. 9 - A tall, slender drinking glass with a thin base is...Ch. 9 - Prob. 15CQCh. 9 - Prob. 16CQCh. 9 - What is the mass of a mallard duck whose speed is...Ch. 9 - (a) What is the magnitude of the momentum of a...Ch. 9 - A 54 kg person walks due north with a speed of 1.2...Ch. 9 - A 26.2-kg dog is running northward at 2.70 m/s,...Ch. 9 - Predict/Calculate Two air-track carts move toward...Ch. 9 - A 0.145-kg baseball is dropped from rest. If the...Ch. 9 - A 285-g ball falls vertically downward, hitting...Ch. 9 - Object 1 has a mass m1 and a velocity...Ch. 9 - Your car rolls slowly in a parking lot and bangs...Ch. 9 - Predict/Explain A net force of 200 N acts on a...Ch. 9 - Predict/Explain Referring to the previous...Ch. 9 - Predict/Explain Two identical cars, each traveling...Ch. 9 - Force A has a magnitude F and acts for the time t...Ch. 9 - Find the magnitude of the impulse delivered to a...Ch. 9 - A 0.45-kg croquet ball is initially at rest on the...Ch. 9 - When spiking a volleyball, a player changes the...Ch. 9 - Force Platform A force platform measures the...Ch. 9 - Air Bag Safety If a driver makes contact with a...Ch. 9 - To make a bounce pass, a player throws a 0.60-kg...Ch. 9 - BIO Concussion Impulse One study suggests that a...Ch. 9 - Predict/Calculate A 0.14-kg baseball moves toward...Ch. 9 - A player bounces a 0.43-kg soccer ball off her...Ch. 9 - Two ice skaters stand at rest in the center of an...Ch. 9 - A 0.042-kg pet lab mouse sits on a 0.35-kg...Ch. 9 - An object initially at rest breaks into two pieces...Ch. 9 - A 92-kg astronaut and a 1200-kg satellite are at...Ch. 9 - The recoil of a shotgun can be significant....Ch. 9 - A plate drops onto a smooth floor and shatters...Ch. 9 - Suppose the car in Example 9-13 has an initial...Ch. 9 - Two 78.5-kg hockey players skating at 4.47 m/s...Ch. 9 - An air-track cart with mass m1 = 0.32 kg and...Ch. 9 - Predict/Calculate A bullet with a mass of 4.0 g...Ch. 9 - BIO Concussion Recoil The human head can be...Ch. 9 - Two objects moving with a speed v travel in...Ch. 9 - In the apple-orange collision in Example 9-16,...Ch. 9 - A732-kg car stopped at an intersection is...Ch. 9 - The collision between a hammer and a nail can be...Ch. 9 - Predict/Calculate A charging bull elephant with a...Ch. 9 - Prob. 39PCECh. 9 - The three air carts shown in Figure 9-28 have...Ch. 9 - An air-track cart with mass m =0.25 kg and speed...Ch. 9 - Predict/Explain A stalactite in a cave has drops...Ch. 9 - Prob. 43PCECh. 9 - Find the x coordinate of the center of mass of the...Ch. 9 - Prob. 45PCECh. 9 - A pencil standing upright on its eraser end falls...Ch. 9 - Prob. 47PCECh. 9 - The location of the center of mass of the...Ch. 9 - The Center of Mass of Sulfur Dioxide Sulfur...Ch. 9 - Prob. 50PCECh. 9 - A 0 726-kg rope 2 00 meters long lies on a floor...Ch. 9 - Prob. 52PCECh. 9 - Prob. 53PCECh. 9 - Helicopter Thrust During a rescue operation, a...Ch. 9 - Rocks for a Rocket Engine A child sits in a wagon...Ch. 9 - A 57.8-kg person holding two 0.880-kg bricks...Ch. 9 - A fire hose can expel water at a rate of 9.5 kg/s...Ch. 9 - A 0 540-kg bucket rests on a scale Into this...Ch. 9 - Predict/Calculate Holding a long rope by its upper...Ch. 9 - CE Object A has a mass m, object B has a mass 2m,...Ch. 9 - CE Object A has a mass m, object B has a mass 4m,...Ch. 9 - CE A juggler performs a series of tricks with...Ch. 9 - A golfer attempts a birdie putt, sending the 0...Ch. 9 - Predict/Calculate Two trucks drive directly away...Ch. 9 - Prob. 65GPCh. 9 - A 1 35-kg block of wood sits at the edge of a...Ch. 9 - In a stunt, three people jump off a platform and...Ch. 9 - Predict/Calculate The carton of eggs shown in...Ch. 9 - The Force of a Storm During a severe storm in Palm...Ch. 9 - An experiment is performed in which two air carts...Ch. 9 - Figure 9-40 shows position-versus-time data from...Ch. 9 - To balance a 35.5-kg automobile tire and wheel, a...Ch. 9 - A hoop of mass M and radius R rests on a smooth,...Ch. 9 - Predict/Calculate A 63-kg canoeist stands in the...Ch. 9 - Prob. 75GPCh. 9 - A young hockey player stands at rest on the ice...Ch. 9 - Prob. 77GPCh. 9 - A 0.454-kg block is attached to a horizontal...Ch. 9 - BIO Escaping Octopus The giant Pacific octopus...Ch. 9 - Prob. 80GPCh. 9 - The three air carts shown in Figure 9-44 have...Ch. 9 - Unlimited Overhang Four identical textbooks, each...Ch. 9 - Consider a one-dimensional. head-on elastic...Ch. 9 - Two air carts of mass m1 = 0.84 kg and m2 = 0.42...Ch. 9 - Golden Earrings and the Golden Ratio A popular...Ch. 9 - Amplified Rebound Height Two small rubber balls...Ch. 9 - Predict/Calculate Weighing a Block on an Incline A...Ch. 9 - Predict/Calculate A uniform rope of length L and...Ch. 9 - Prob. 89PPCh. 9 - Prob. 90PPCh. 9 - Prob. 91PPCh. 9 - Prob. 92PPCh. 9 - Referring to Example 9-12 Suppose a bullet of mass...Ch. 9 - Referring to Example 9-12 A bullet with a mass m =...Ch. 9 - Referring to Example 9-19 Suppose that cart 1 has...Ch. 9 - Referring to Example 9-19 Suppose the two carts...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the more metallic element from each pair. a. Sb or Pb b. K or Ge c. Ge or Sb d. As or Sn
Introductory Chemistry (6th Edition)
3. In a test of his chromosome theory of heredity, Morgan crossed an F1 female Drosophila with red eyes to a m...
Genetic Analysis: An Integrated Approach (3rd Edition)
17. Anthropologists are interested in locating areas in Africa where fossils 4-8 million years old might be fou...
Campbell Biology: Concepts & Connections (9th Edition)
Choose the best answer to each of the following. Explain your reasoning. How does a but Jupiter differ from Jup...
Cosmic Perspective Fundamentals
Which compound is more easily decarboxylated?
Organic Chemistry (8th Edition)
4. A 20 nC charge is moved from a point where V = 150 V to a point where V = –50 V. How much work is done by th...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sled and rider have a total mass of 56.8 kg. They are on a snowy hill. The coefficient of kinetic friction between the sled and the snow is 0.195. The angle of the hills slope measured upward from the horizontal is 19.5. What is the acceleration of the rider? Is the acceleration greater, less than, or equal to your result if a more massive rider uses the same sled on the same hill? Explain.arrow_forwardThe shower curtain rod in Figure P6.7 is called a tension rod. The rod is not attached to the wall with screws, nails, or glue, but is pressed into the wall instead. Explain why the rod remains at rest, supporting the curtain. Explain why the name is misleading and come up with a better name. FIGURE P6.7arrow_forwardA block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling? Repeat Problem 71, but this time you pull on the block at an angle of 20.0.arrow_forward
- A 0.500-kg potato is fired at an angle of 80.0 above the horizontal from a PVC pipe used as a “potato gun” and reaches a height of 110.0 m. (a) Neglecting air resistance, calculate the potato’s velocity when it leaves the gun. (b) The gun itself is a tube 0.430 m long. Calculate the average acceleration of the potato in the tube as it goes from zero to the velocity found in (a). (c) What is the average force on the potato in the gun? Express your answer in newtons and as a ratio to the weight of the potato.arrow_forward2. The driver of a 1.00 x103 kg car traveling on the interstate at 35 m/s slams on his brakes to avoid hitting a second vehicle in front of him, which had come to rest because of congestion ahead. After the breaks are applied, a constant kinetic force of magnitude 8.00 x103 N acts on the car. Ignore air resistance. a. At what minimum distance should the brakes be applied to avoid a collision with the other vehicle? b. If the distance between the vehicles is initially only 30.0 m, at what speed would the collision occur?arrow_forwardA 50-kg cart is rolling across the floor with an initial speed of 4 m/s toward a glass window which is 5 m away. Unless you push against the cart to help stop the cart will not stop in time to keep from rolling into the window. The coefficient of friction against the cart is 0.15. You step in front of the cart and push against the motion. You will find what force you need to push in order to stop the cart in a distance of 5 m. what is the net force? what is the force of friction on the cart? what is the force of the push?arrow_forward
- PROBLEM I The 260kg crate shown in the figure rests on a horizontal surface for which the coefficient of kinetic friction is 025. If the crate is subjected to a 400 N towing force as shown determine the velocity of the crate in 5 s starting from rest PROBLEM 2 PROBLEM 3 The 80 kg block A shown in Figure is released from rest If the masses of the puleys and the cord are neglected determine the speed of the 12 kg block B in 3 s m₁ P = 400 N 6 = 30° 30⁰ SH Datum Consider the masses my 20 kg and m, 18 kg in the system represented by the figure bekow, If the coefficient of friction is OJ and the incination angle is 30°, find the acceleration of the system and the tension in the cord joining two mossCS m₂arrow_forwardProblems: 210, 211, 216, 218, 231, 233, 238, 242, 257, 264 I. In the figure below, the x-component of the force P is 140 lb to the left. Determine P and its y- component. P 7 ww Yarrow_forwardPlease answerarrow_forward
- *109. D The central ideas in this problem are reviewed in Multiple-Concept Example 9. One block rests upon a horizontal surface. A second identical block rests upon the first one. The coefficient of static friction between the blocks is the same as the coefficient of static friction between the lower block and the horizontal surface. A horizontal force is applied to the upper block, and the magnitude of the force is slowly increased. When the force reaches 47.0 N, the upper block just begins to slide. The force is then removed from the upper block, and the blocks are returned to their original configuration. What is the magnitude of the horizontal force that should be applied to the lower block so that it just begins to slide out from under the upper block?arrow_forwardA 54 kg girl is walking up a 22 kg uniform beam. The coefficient of friction is 0.2 at all surfaces. A) What is the reaction at A? B) What is the reaction at B? C) Determine the distance "x" up the beam can the girl walk, before the beam starts to slip.arrow_forwardStarting at time t = 0, an object starts moving along a straight line. Its coordinate in meters is given by: x(t)=7t-4t°, where t is in seconds. When it momentarily stops its acceleration is: O a. 18.33 O b. -9.17 O c -18.33 O d. -12.22 An elevator cab and its load have a combined mass of 5.6 kg. When the cab, originally moving downward at 4.4 m/s, is brought to rest with constant acceleration in a distance of 5.5 m. The tension (N) in the supporting cable will be: Answer:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY