Concept explainers
BIO Concussion Recoil The human head can be considered as a 3.3-kg cranium protecting a 1.5-kg brain, with a small amount of cerebrospinal fluid that allows the brain to move a little bit inside the cranium Suppose a cranium at rest is subjected to a force of 2800 N for 6.5 ms in the forward direction. (a) What is the final speed of the cranium? (b) The back of the cranium then collides with the back of the brain, which is still at rest, and the two move together. What is their final speed? (c) The cranium now hits an external object and suddenly comes to rest, but the brain continues to move forward. If the front of the brain interacts with the front of the cranium over a period of 15 ms before coming to rest, what average force is exerted on the brain by the cranium?
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Chemistry: Structure and Properties (2nd Edition)
Human Anatomy & Physiology (2nd Edition)
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
- A person slaps her leg with her hand, bringing her hand to rest in 2.50 milliseconds from an initial speed of 4.00 m/s. (a) What is the average force exerted on the leg, taking the effective mass of the hand and forearm to be 1.50 kg? (b) Would the force be any different if the woman clapped her hands together at the same speed and brought them to rest in the same time? Explain why or why not.arrow_forwardA cart is set rolling across a level table, at the same speed on every trial. If it runs into a patch of sand, the cart exerts on the sand an average horizontal force of 6 N and travels a distance of 6 cm through the sand as it comes to a stop. It instead the cart runs into a patch of gravel on which the can exerts an average horizontal force of 9 N, how far into the gravel will the cart roll before stopping? (a) 9 cm (b) 6 cm (c) 4 cm (d) 3 cm (e) none of those answersarrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3(e) 9arrow_forward
- A bullet with a mass of 0.01 kg is tired horizontally into a block of wood hanging on a string. The bullet sticks in the wood and causes it to swing upward to a height of 0.1 m. If the mass of the wood block is 2 kg, what was the initial speed of the bullet?arrow_forwardThe masses of the javelin, discus, and shot are 0.80 kg, 2.0 kg, and 7.2 kg, respectively, and record throws in the corresponding track events are about 98 m, 74 m, and 23 m, respectively. Neglecting air resistance, (a) calculate the minimum initial kinetic energies that would produce these throws, and (b) estimate the average force exerted on each object during the throw, assuming the force acts over a distance of 2.0 m. (c) Do your results suggest that air resistance is an important factor?arrow_forwardReview. A force platform is a tool used to analyze the performance of athletes by measuring the vertical force the athlete exerts on the ground as a function of time. Starting from rest, a 65.0-kg athlete jumps down onto the platform from a height of 0.600 m. While she is in contact with the platform during the time interval 0t 0.800 s, the force she exerts on it is described by the function F = 9 200t 11 500 t2 where F is in newtons and t is in seconds. (a) What impulse did the athlete receive from the platform? (b) With what speed did she reach the platform? (c) With what speed did she leave it? (d) To what height did she jump upon leaving the platform?arrow_forward
- A cart is set rolling across a level table, al the same speed on every trial. If it runs into a patch of sand, the cart exerts on the sand an average horizontal force of 6 N and travels a distance of 6 cm through the sand as it comes to a stop. If instead the cart runs into a patch of Hour, it rolls an average of 18 cm before stopping. What is the average magnitude of the horizontal force the cart exerts on the flour? (a) 2 N (b) 3 N (c) 6 N (d) 18 N (e) none of those answersarrow_forwardTwo blocks collide on a frictionless surface. After the collision, the blocks stick together. Block A has a mass M and is initially moving to the right at speed v. Block B has a mass 2M and is initially at rest. System C is composed of both blocks, (a) Draw a force diagram for each block at an instant during the collision, (b) Rank the magnitudes of the horizontal forces in your diagram. Explain your reasoning, (c) Calculate the change in momentum of block A, block B, and system C. (d) Is kinetic energy conserved in this collision? Explain your answer. (This problem is courtesy of Edward F. Redish. For more such problems, visit http://www.physics.umd.edu/perg.)arrow_forwardA bloc k, of mass m is dropped from the fourth Moor of an office building and hits the sidewalk below at speed v. From what floor should the block be dropped to double that impact speed? (a) the sixth floor (b) the eighth floor (c) the tenth floor (d) the twelfth floor (e) the sixteenth floorarrow_forward
- (a) What is the mass of a large ship that has a momentum of 1.60109kgm/s, when the ship is moving at a speed of 48.0 km/h? (b) Compare the ship's momentum to the momentum of a 1100-kg artillery shell fired at a speed of 1200 m/s.arrow_forward(a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).arrow_forwardTo give a pet hamster exercise, some people put the hamster in a ventilated ball andallow it roam around the house(Fig. P13.66). When a hamsteris in such a ball, it can cross atypical room in a few minutes.Estimate the total kinetic energyin the ball-hamster system. FIGURE P13.66 Problems 66 and 67arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning