FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 121P
A block slides down along, straight inclined wall at speed V,riding on a thin film of oil of thickness h (Fig. 9-121). The weight of the block is W. and its surface area In contact with the oil film is A. Suppose V i s measured, and W, A. angle a. and viscosity ?? are also known. Oil film thickness h i s not known. (a) Generate an exact analytical expression for h as a function of the known parameters V, A, W, a, and
FIGURE P9-121
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
is called a cone-plate viscometer
A solid cone of angle 2k, base 1, and density p, is rotat-
Ing with initial angular velocity my inside a conical.seat,
as shown in Fig.
of viscosity u. Neglecting air drag, derive an analytical ex-
pression for the cone's angular velocity ) if there is no
applied tongue.
The device in Fig.
The angle of the cone is very small, so thiat sin 0
0, and the gap is filled with the test liquid. The torque M
to rotate the cone at a rate 1 is measured. Assuming a lin-
ear velocity profile in the fluid film, derive an expression
for tiuid viscosity u as a tumction of (M, R. S2, 0).
The clearance h is filled with nil
Bave
C co
radius a
dwit)
dt
Fluid
I manmot
1Inentia
Derive an expression for the capillary height change h for
a fluid of surface tension Y and contact angle 0 between
two vertical parallel plates a distance W apart, as in Fig.
. What will li be for water at 20°C if W = 0.5 mm?
A thin plate is separated from two fixed plates by very vis-
cous liquids…
Mott ."
cometer, which we can analyze later in Chap. 7. A small
ball of diameter D and density p, falls through a tube of test
liquid (p. µ). The fall velocity V is calculated by the time to
fall a measured distance. The formula for calculating the
viscosity of the fluid is
discusses a simple falling-ball vis-
(Po – p)gD²
18 V
This result is limited by the requirement that the Reynolds
number (pVD/u) be less than 1.0. Suppose a steel ball (SG =
7.87) of diameter 2.2 mm falls in SAE 25W oil (SG = 0.88)
at 20°C. The measured fall velocity is 8.4 cm/s. (a) What is
the viscosity of the oil, in kg/m-s? (b) Is the Reynolds num-
ber small enough for a valid estimate?
Books on porous media and atomization claim that the viscosityμ and surface tension Y of a fl uid can be combinedwith a characteristic velocity U to form an important dimensionlessparameter. ( a ) Verify that this is so. ( b ) Evaluatethis parameter for water at 20°C and a velocity of3.5 cm/s. Note: You get extra credit if you know the nameof this parameter.
Chapter 9 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Evaluate the dimensionless groups hcD/k,UD/, and cp/k for water, n-butyl alcohol, mercury, hydrogen, air, and saturated steam at a temperature of 100C. Let D=1m,U=1m/sec, and hc=1W/m2K.arrow_forwardThe Reynolds number for a 1-ft-diameter sphere moving at2.3 mi/h through seawater (specifi c gravity 1.027, viscosity1.07 E-3 N ? s/m 2 ) is approximately( a ) 300, ( b ) 3000, ( c ) 30,000, ( d ) 300,000, ( e ) 3,000,000arrow_forwardEx. The force required to tow a 1:30scale model of a motor boat in a lake at a speed of 2m/s is 0.5 N, Assuming that the viscosity resistance due to water and air is negligible in comparison with the wave resistance, calculate the corresponding speed of the prototype for dynamically similar conditions. What would be the force required to propel the prptype at that velocity in the same lake? Ans.: 10.95m/s, 13500Narrow_forward
- (b) A Formula 1 team tests their car in a wind tunnel at a scale of 50%, at a speed of Vwinarunnet = 50 m/s. The measured downforce at this speed is Foownforce.WT = 3000 N and the model reference area is Aref wT = 0.5 m?. 1. Find the downforce magnitude on the full-scale race car at the same Reynolds number. Assume constant air density p = 1.2 kg/m. II. It is said that F1 cars could travel upside down, as shown below. At what speed should the full-scale car travel to achieve this, if its mass is m = 740 kg? The acceleration of gravity is g = 9.81 m/s?. Downforce Weightarrow_forward1. The Stokes-Oseen formula for drag force Fon a sphere of diameter D in a fluid stream of low velocity V, density p, and viscosity u is: 9T F = 3TuDV + 16PD? Is this formula dimensionally homogenous? 2. The efficiency n of a pump is defined as the (dimensionless) ratio of the power required to drive a pump: QAp input power Where Q is the volume rate of flow and Ap is the pressure rise produced by the pump. Suppose that a certain pump develops a pressure of Ibf/in? (1ft = 12 in) when its flow rate is 40 L/s (1L =0.001 m). If the input power is 16hp (1hp = 760 W), what is the efficiency?arrow_forwardPlease answer the following questionarrow_forward
- A liquid of density ? and viscosity ? flows by gravity through a hole of diameter d in the bottom of a tank of diameter DFig. . At the start of the experiment, the liquid surface is at height h above the bottom of the tank, as sketched. The liquid exits the tank as a jet with average velocity V straight down as also sketched. Using dimensional analysis, generate a dimensionless relationship for V as a function of the other parameters in the problem. Identify any established nondimensional parameters that appear in your result. (Hint: There are three length scales in this problem. For consistency, choose h as your length scale.) except for a different dependent parameter, namely, the time required to empty the tank tempty. Generate a dimensionless relationship for tempty as a function of the following independent parameters: hole diameter d, tank diameter D, density ? , viscosity ? , initial liquid surface height h, and gravitational acceleration g.arrow_forwardi need the answer quicklyarrow_forwardPLS SHOW ME FULL STEPS SIR PLS ANSWER WITHIN 30 MIN SIR SUBJECT (FLUID MECH 2) use setting 2arrow_forward
- Oil relation between the shear stress and rate of deformation is given in the figure, If the oil density is =270.5 kg/m what is its viscosity in (m /s)? Oil 20 Rate of deformation, duldy Lenovo K9 Note Al Dual Camera Shear stress, 7arrow_forwardLast three onlyarrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License