FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 21CP
In this chapter we derive the continuity equation in two way: by using the divergence theorem and by summing mass flow rates through each face of an infinitesimal control volume. Explain why the former is so much less involved than the latter.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain the fundamental differences between a flow domain and a control volume.
Explain why the incompressible flow approximation and the constant temperature approximation usually go hand in hand.
q1
Chapter 9 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a steady flow of incompressible fluid, as the diameter is doubled, the velocity will (a) be halved (c) increase four fold (b) be doubled (d) decrease four foldarrow_forwardUnder what conditions may one describe atmospheric processes using the incompressible form of the continuity equation?arrow_forwardIs the continuity equation applicable for steam despite being compressible fluid?arrow_forward
- A capillary tube has an 8mm inside diameter through which liquid fluorine refrigerant R-11 flows at a rate of 0.03 cm3/s. The tube isto be used as a throttling device in an air conditioning unit. A model of this flow is constructed by using a pipe of 3cm inside diameter and water as the fluid medium. (Density of R-11 = 1.494 g/cm3 and its viscosity is 4.2 x10-4 Pa.s; Density of water is 1g/cm3 and its viscosity 8.9 x10-4 Pa.s)a) What is the required velocity in the model for dynamic similarity? Hint: For flow through a tube the Ne number can be expressed in terms of the Reynolds numberb) When dynamic similarity is achieved the pressure drop is measured at 50 Pa. What is the corresponding pressure drop in the capillary tube?Hint: In this case the Euler number defines dynamic similarity with reference to the static pressure droparrow_forwardBernoulli’s principle and the continuity equation. Give alsoan example of their real-life application.arrow_forwardD--- p, FIGURE P7-62 7–63 Consider laminar flow through a long section of pipe, as in Fig. P7–62 0. For laminar flow it turns out that wall roughness is not a relevant parameter unless e is very large. The volume flow rate b through the pipe is a function of pipe diameter D, fluid viscosity µ, and axial pressure gradient dPldx. If pipe diameter is doubled, all else being equal, by what factor will volume flow rate increase? Use dimensional analysis.arrow_forward
- 9-94: Repeat Prob. 9–93, but let the inner cylinder be stationary and the outer cylinder rotate at angular velocity ?o. Generate an exact solution for u?(r) using the step-by-step procedure discussed in this chapter. I have done 9-93 and know it is on here already but here is the problem statement for it: 9-93: An incompressible Newtonian liquid is confined between two concentric circularcylinders of infinite length— a solid inner cylinder of radius Ri and a hollow, stationaryouter cylinder of radius Ro (Fig. P9–93; the z-axis is out ofthe page). The inner cylinder rotates at angular velocity ?i .The flow is steady, laminar, and two-dimensional in ther? -plane. The flow is also rotationally symmetric, meaningthat nothing is a function of coordinate ? (u? and P arefunctions of radius r only). The flow is also circular,meaning that velocity component ur = 0 everywhere.Generate an exact expression for velocity component u? asa function of radius r and the other parameters in theproblem.…arrow_forwardandarrow_forwardThe velocity profile for laminar flow between two plates, as in Fig.3, is 2umaxy(h-y) h4 u= If the wall temperature is Tw at both walls, use the incompressible flow energy equation to solve for the temperature distribution T (y) between the walls for steady flow. Energy equation: dT pcp dt y=h y=0 •= kV²T +4 u(y) v=W=0 Tw T(y) Fig.3. Fluid flow between two wallsarrow_forward
- Topic: Heat transfer Completely solve and box the final answer. Water flows at 5m/s is passed through a tube of 2.5 cm diameter, it is found to be heated from 20degC to 60degC. The heating is achieved by condensing steam on the surface of the tube and subsequently the surface temperature of the tube is maintained at 90degC. Water properties are as follows: density=995kg/m3, kinematic viscosity=.657x10-6 m2/s, Pr=4.43, k=.628W/mK, cp=4178J/kgK. Determine the Reynolds number.arrow_forward(a) What is the difference between incompressible flow and incompressible fluid? Consider a compressible fluid scenario, must it be treated as compressible?arrow_forwardThe continuity equation is also known as (a) Conservation of mass (b) Conservation of energy (c) Conservation of momentum (d ) Newton’s second law (e) Cauchy’s equationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License