FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 13P
Yy13
To determine
The cylindrical velocity components
The nature of the flow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A velocity field is given by u = 5y2, v = 3x, w = 0. (a) Is this flow steady or unsteady? Is it two- or three- dimensional? (b) At (x,y,z) = (3,2,–3), compute the velocity vector. (c) At (x,y,z) = (3,2,–3), compute the local (i.e., unsteady part) of the acceleration vector. (d ) At (x,y,z) = (3,2,–3), compute the convective (or advective) part of the acceleration vector. (e) At (x,y,z) = (3,2,–3), compute the (total) acceleration vector.
[2] Consider the following stedy, incompressible, two-dimensional velocity field:
V=(u,v)=(0.5+1.2x) 7+ (-2.0-1.2y)
Generate an analytical expression for the flow streamlines and draw several streamlines in
the upper-right quadrant from x=0 to 5 and y=0 to 6. (Here use the relation: dy/dx=v/u in
the streamlines.)
Please answer both
Chapter 9 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Converging duct flow is modeled by the steady, two- dimensional velocity field V = (u, v) = (U₁ + bx) i-by. For the case in which Ug = 3.56 ft/s and b = 7.66 s¯¹, plot several streamlines from x = 0 ft to 5 ft and y=-2 ft to 2 ft. Be sure to show the direction of the streamlines. (Please upload you response/solution using the controls provided below.)arrow_forwardA steady, two-dimensional, incompressible velocity field has Cartesian velocity components u = Cy/(x2 + y2) and ? = −Cx/(x2 + y2), where C is a constant. Transform these Cartesian velocity components into cylindrical velocity components ur and u?, simplifying as much as possible. You should recognize this flow. What kind of flow is this?arrow_forward1. A Cartesian velocity field is defined by V = 2xi + 5yz2j − t3k. Find the divergence of the velocity field. Why is this an important quantity in fluid mechanics? 2. Is the flow field V = xi and ρ = x physically realizable? 3. For the flow field given in Cartesian coordinates by u = y2 , v = 2x, w = yt: (a) Is the flow one-, two-, or three-dimensional? (b) What is the x-component of the acceleration following a fluid particle? (c) What is the angle the streamline makes in the x-y plane at the point y = x = 1?arrow_forward
- 1. For a velocity field described by V = 2x2i − zyk, is the flow two- or threedimensional? Incompressible? 2. For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0, find the slope of the streamline passing through the point [2, 4] at t = 2. 3. Find the angle the streamline makes with the x-axis at the point [-1, 0.5] for the velocity field described by V = −xyi + 2y2jarrow_forwardA incompressible, steady, velocity field is given by the following components in the x-y plane: u = 0.205 + 0.97x + 0.851y ; v = v0 + 0.5953x - 0.97y How would I calculated the acceleration field (ax and ay), and the acceleration at the point, v0= -1.050 ? Any help would be greatly appreciated :)arrow_forwardI am working on a practice exam and I wanted to be certain if I was going about the problem correctly.arrow_forward
- a. Given the velocity field u=(u,v,w) in Cartesian coordinates with u=2x+y, v=2zt, w=0. i. Find the equations of the corresponding streamlines (Eulerian concept) ii. Find the equations of the corresponding particle paths, i.e., the pathlines (Lagrangian concept). b. Show that the Vu=0 everywhere implies that volumes are conserved, i.e., the volume of red particles at t-0 is the same as at t=t. Hint: Write out what you must prove and use the theorems to get there.arrow_forwardI'm looking forward to your solutionfluid mechanicsthanksarrow_forward(a) Given the following steady, two-dimensional velocity field. [Diberi medan halaju yang mantap dan dua dimensi.] V = (u, v) = (8x + 6)ï + (-8y – 4)j (i) Is this flow field an incompressible flow? Prove your answer. (ii) Is this flow field irrotational? Prove your answer. (iii) Generate an expression for the velocity potential function if applicable.arrow_forward
- 3. The two-dimensional velocity field in a fluid is given by V 2ri+ 3ytj. (i) Obtain a parametric = equation for the pathline of the particle that passed through (1.1) at t = 0. (ii) Without calculating any equation: if I were to draw the streak-line at t = 0 of all points that passed through (1, 1) would it be the same or different? Justify yourself.arrow_forwardi dont understand the questionarrow_forwardneed urgent help, thanks the question is related to advanced fluid mechanicsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license