FLUID MECHANICS FUND. (LL)-W/ACCESS
FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 64P
To determine

The expression for the stream function.

Expert Solution & Answer
Check Mark

Answer to Problem 64P

The stream function is r22(( u z,exit u z,entrance L)×z+(u z,entrance)+C).

Explanation of Solution

Given information:

The velocity component in θ direction is equal to 0.

Write the expression for velocity coordinates along z direction.

  uz=uz,entrance+(u z,exitu z,entranceL)z........... (I)

Write the expression for continuity equation for incompressible flow.

  1r(( r u r )r)+1r(( u θ )θ)+(uz)z=0........... (II)

Here, the change in distance along r direction is r, the change in distance along θ direction is θ, the change in distance in z direction is z, the radial velocity component along r direction is ur, the distance along r direction is r, the velocity component along θ direction is uθ and the velocity component along z direction is uz.

Write the expression for the radial velocity component along r direction.

  ur=1r( ψ z)ψz=rur............ (III)

Here, the partial derivative of the stream function with respect to the change in distance along z direction is ψz.

Write the expression for velocity coordinates along z direction.

  uz=1r( ψ r)ψr=rur............ (IV)

Here, the partial derivative of the stream function with respect to the change in distance along r direction is ψz.

Calculation:

Substitute uz,entrance+[( u z,exit u z,entranceL)] for uz and 0 for uθ in Equation (II).

  1r( ( r u r ) r)+1r( ( 0 ) θ)+( u z,entrance +[ ( u z,exit u z,entrance L )])z=01r( ( r u r ) r)+0+(0+( u z,exit u z,entrance L ))=01r( ( r u r ) r)+( u z,exit u z,entrance L)=0( ( r u r ) r)=r( u z,exit u z,entrance L)........... (V)

Integrate Equation (II) with respect to r.

   ( r u r ) rdr=r( u z,exit u z,entrance L )drrur=r 1+12( u z,exit u z,entrance L)+g(z)rur=r22( u z,exit u z,entrance L)+g(z)............. (VI)

Here, the constant is g(z).

Substitute 0 for r in Equation (III).

  (0)ur= ( 0 )22( u z,exit u z,entrance L)+g(z)0=0+g(z)g(z)=0

Substitute 0 for g(z) in Equation (III).

  rur=r22( u z,exit u z,entrance L)+0rur=r22( u z,exit u z,entrance L)ur=r2( u z,exit u z,entrance L)............ (VII)

Substitute r2(u z,exitu z,entranceL) for ur in Equation (II).

  ψr=r(r2( u z,exit u z,entrance L ))ψr=r22( u z,exit u z,entrance L)........... (VIII)

Integrate Equation (VII) with respect to z.

   ψ r= r 2 2( u z,exit u z,entrance L )dzψ=r22( u z,exit u z,entrance L)×z0+1+f(r)ψ=r22( u z,exit u z,entrance L)×z+f(r)............ (IX)

Substitute r22(u z,exitu z,entranceL)×z+f(r) for ψ in Equation (III).

  ( r 2 2 ( u z,exit u z,entrance L )×z+f( r ))r=rurur=1r×( r 2 2 ( u z,exit u z,entrance L )×z+f( r ))r........... (X)

Differentiate Equation (X) with respect to r.

  uz=1r×( 2× r 21 2 ( u z,exit u z,entrance L )×z+f( r ))r=1r×r×( u z,exit u z,entrance L )×z+f(r)r=( u z,exit u z,entrance L)×z+1r×f(r)............ (XI)

Here, the constant is f(r).

Equate Equation (XI) with Equation (V).

  ( u z,exit u z,entrance L)×z+1r×f(r)=uz,entrance+( u z,exit u z,entrance L)zuz,entrance=( u z,exit u z,entrance L)z( u z,exit u z,entrance L)z+1r×f(r)uz,entrance=1r×f(r)f(r)=ruz,entrance........... (XII)

Integrate Equation (XII) with respect to r.

  f( r)=r u z,entrancedr=r 1+11+1(u z,entrance)+C=r22(u z,entrance)+C........... (XIII)

Here, the constant is C.

Substitute Equation (XIII) in Equation (IX).

  ψ=r22( u z,exit u z,entrance L)×z+r22(u z,entrance)+C=r22(( u z,exit u z,entrance L )×z+( u z,entrance )+C)

Conclusion:

The stream function is r22(( u z,exit u z,entrance L)×z+(u z,entrance)+C).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An office building is planned with a lateral-force-resisting system designed for earthquake resistance in aseismic zone. The seismic capacity of the proposed system, expressed as a force factor, is assumed tofollow a lognormal distribution with a median of 6.5 and a standard deviation of 1.5. The ground motionfrom the largest expected earthquake at the site is estimated to correspond to an equivalent force factor of 5.5.(a) What is the estimated probability that the building will experience damage when subjected to the largest expected earthquake? (b) If the building survives (i.e., experiences no damage) during a previous moderate earthquake with aforce factor of 4.0, what is the updated probability of failure of the building under the largest expectedearthquake?(c) Suppose future occurrences of the largest expected earthquake follow a Poisson process with a mean return period of 500 years. Assuming that damage events from different earthquakes are statisticallyindependent,…
During a plant visit, it was noticed that a 12-m-long section of a 10-cm-diameter steam pipe is completely exposed to the ambient air. The temperature measurements indicate that the average temperature of the outer surface of the steam pipe is 75°C when the ambient temperature is 5°C. There are also light winds in the area at 10 km/h. The emissivity of the outer surface of the pipe is 0.8, and the average temperature of the surfaces surrounding the pipe, including the sky, is estimated to be 0°C. Determine the amount of heat lost from the steam during a 10-h-long work day. Steam is supplied by a gas-fired steam generator that has an efficiency of 80 percent, and the plant pays $1.05/therm of natural gas. If the pipe is insulated and 90 percent of the heat loss is saved, determine the amount of money this facility will save a year as a result of insulating the steam pipes. Assume the plant operates every day of the year for 10 h. State your assumptions.
An old fashioned ice cream kit consists of two concentric cylinders of radii Ra and Rb. The inner cylinder is filled with milk and ice cream ingredients while the space between the two cylinders is filled with an ice-brine mixture. Ice cream begins to form on the inner surface of the inner cylinder. To expedite the process, would you recommend rotating the inner cylinder? Justify your recommendation. icecream/ ice-brine Ra Rb

Chapter 9 Solutions

FLUID MECHANICS FUND. (LL)-W/ACCESS

Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license