Interpretation:
The Lewis structure and geometry of
Concept introduction:
Hybrid orbital theory is based upon the formation of hybrid orbitals by the mixing of atomic orbitals.
To explain bonding by hybrid orbitals, the number of electrons around the central atom is determined by drawing the Lewis structure of the molecule.
The ground state orbital diagram for the central atom is drawn.
Excitation of electrons to higher orbitals occurs to get the highest number of unpaired electrons.
The required number of hybrid orbitals are combined to obtain the hybridization of the central atom.
Electron domain is the bond pair and lone pair of electrons around the central atom.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
EBK CHEMISTRY
- Describe the hybridization around the central atom and the bonding in SCl2 and OCS.arrow_forwardIt is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forwardAcrylonitrile, C3H3N is the building mer Orlon. Its Lewis structure is What is the hybridization of nitrogen and of the three numbered carbon atoms?arrow_forward
- Sketch the resonance structures for the N2O molecule. Is the hybridization of the N atoms the same or different in each structure? Describe the orbitals involved in bond formation by the central N atom.arrow_forwardConsider the reaction BF3 + NH3 -> F3B-NH3 (a) Describe the changes in hybridization of the B and N atoms as a result of this reaction. (b) Describe the shapes of all the reactant molecules with their bond angles. (c) Draw the overall shape of the product molecule and identify the bond angles around B and N atoms. (d) What is the name of the bond between B and N. (e)Describe the bonding orbitals that make the B and F, B and N & N and H bonds in the product molecule.arrow_forwardValence bond theory The skeletal structure for methyleneimine (CH₂NH) is shown. Draw for yourself the best Lewis structure. Propose a bonding scheme by indicating the hybridization of the central atoms and the orbital overlaps for each bond. (a) H one (b) H-C-N-H The bond labeled (a) forms from The bond labeled (b) forms from: ● one o-overlap of a C (c) π-overlap (s) of a C -overlap of a C sp2 orbital and a N orbital and a N orbital and a H 1s The ideal bond angle <(C-N-H) around the N atom is orbital, and orbital. The bond labeled (c) forms from O - overlap of a N There is/are one lone pair(s) around the N atom. Lewis structures do not attempt to portray 3D shape, but you can predict the molecular geometry from VSEPR theory. The ideal bond angle <(H-C-H) around the C atom is 120 orbital and a H 1s degrees. orbital. degrees. orbital.arrow_forward
- Consider the SCl2 molecule. (a) What is the electron configuration of an isolated S atom? (b) What is the electron configuration of an isolated Cl atom? (c) What hybrid orbitals should be constructed on the S atom to make the S-Cl bonds in SCl2 ? (d) What valence orbitals if any, remain unhybridized on the S atom in SCL2 ?arrow_forwardH2CO molecules (a) use orbital hybridization theory to determine the molecular shape of h2co. (b) what bonds are formed between the c and o atoms in formaldehyde molecules?arrow_forward(a) Write a single Lewis structure for SO3 , and determine the hybridization at the S atom. (b) Are there other equivalent Lewis structures for the molecule? (c) Would you expect SO3 to exhibit delocalized π bonding?arrow_forward
- 10.What is the hybridization of the central atom in each of the following? (a) BeH2 (b) SF6 (c) PO43− (d) PCl5arrow_forwardIn hydrogen isocyanide molecules (HCN), both carbon (C: 1s^2 2s^2 2p^2 ) and nitrogen (N: 1s^2 2s^2 2p^3 ) atoms undergo sp hybridization. (a) Use Orbital Hybridization theory to determine the molecular shape of HCN molecules. (b) Explain how the C atom binds to the N atom in HCN molecules.arrow_forwardBorane (BH3) is unstable under normal conditions, but it has been detected at lowpressure.(a) Draw the Lewis structure for borane.(b) Draw a diagram of the bonding in BH3, and label the hybridization of each orbital.(c) Predict the H¬B¬H bond anglearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning