A 1.2-m plank with a mass of 3 kg rests on two joists. Knowing that the coefficient of static friction between the plank and the joists is 0.30, determine the magnitude of the horizontal force required to move the plank when (a) a = 750 mm, (b) a = 900 mm.
Fig. P8.37
(a)
Find the magnitude of the horizontal force required to move the plank.
Answer to Problem 8.37P
The magnitude of the horizontal force required to move the plank is
Explanation of Solution
Given information:
The length of the plank is
The mass of each plank is
The coefficient of static friction between the plank and the joists is
The distance between the points A and C in the plank is
Calculation:
Find the friction force (F) using the relation.
Show the free-body diagram of the member AB is vertical plane as in Figure 1.
Take moment about point A.
Resolve the vertical component of forces.
Show the free-body diagram of the member AB is horizontal plane as in Figure 2.
Take moment about point A.
Resolve the vertical component of forces.
Find the weight of the plank (W) using the relation.
Here, the acceleration due to gravity is g.
Consider the acceleration due to gravity is
Substitute 3 kg for m and
Substitute 29.43 N for W, 1.2 m for L, and 750 mm for a in Equation (1).
Substitute 29.43 N for W, 1.2 m for L, and 750 mm for a in Equation (2).
Substitute 1.2 m for L, and 750 mm for a in Equation (3).
Substitute 1.2 m for L, and 750 mm for a in Equation (4).
At point A, the plank to slip;
Find the horizontal force P using the relation.
Substitute 0.6P for
At point C, the plank to slip;
Find the horizontal force P using the relation.
Substitute 1.6P for
The smallest value of P will slip the plank. The plank will slip at A.
Therefore, the magnitude of the horizontal force required is
(b)
Find the magnitude of the horizontal force required to move the plank.
Answer to Problem 8.37P
The magnitude of the horizontal force required is
Explanation of Solution
Given information:
The length of the plank is
The mass of each plank is
The coefficient of static friction between the plank and the joists is
The distance between the points A and C in the plank is
Calculation:
Refer part (a) for calculation.
Substitute 29.43 N for W, 1.2 m for L, and 900 mm for a in Equation (1).
Substitute 29.43 N for W, 1.2 m for L, and 900 mm for a in Equation (2).
Substitute 1.2 m for L, and 900 mm for a in Equation (3).
Substitute 1.2 m for L, and 900 mm for a in Equation (4).
At point A, the plank to slip;
Find the horizontal force P using the relation.
Substitute 0.3333P for
At point C, the plank to slip;
Find the horizontal force P using the relation.
Substitute 1.3333P for
The smallest value of P will slip the plank. The plank will slip at C.
Therefore, the magnitude of the horizontal force required is
Want to see more full solutions like this?
Chapter 8 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
- 4. G A micarta pinion rotating at 1200 r.p.m. is to transmit 1 kW to a cast iron gear at a speed of 192 r.p.m. Assuming a starting overload of 20% and using 20° full depth involute teeth, determine the module, number of teeth on the pinion and gear and face width. Take allowable static strength for micarta as 40 MPa and for cast iron as 53 MPa. Check the pair in wear.arrow_forwardI want to solve these choicesarrow_forward2. A spur gear made of bronze drives a mid steel pinion with angular velocity ratio of 32: 1. The pressure angle is 14½. It transmits 5 kW at 1800 r.p.m. of pinion. Considering only strength, design the smallest diameter gears and find also necessary face width. The number of teeth should not be less than 15 teeth on either gear. The elastic strength of bronze may be taken as 84 MPa and of steel as 105 MPa. Lewis factor for 14½½ pressure angle may be taken 0.684 0.124 y = No. of teeth as [Ans. m 3 mm; b= 35 mm; Dp = 48 mm; D= 168 mm]arrow_forward
- Q2. Determine the safety factors for the bracket rod shown in Figure 2 based on both the distortion-energy theory and the maximum shear theory and compare them. Given: The material is 2024-T4 aluminum with a yield strength of 47 000 psi. The rod length /= 6 in. and arm a = 8 in. The rod outside diameter od 1.5 in., id = 1 in, h=2 in., t=0.5 in., Load F= 1000 lb. Assumptions: The load is static and the assembly is at room temperature. Consider shear due to transverse loading as well as other stresses. (Note: solve in SI units) wall tube Figure 2 armarrow_forwardThe question has been set up with all the cuts needed to accurately derive expressions for V(x) and M(x). Using the cuts free body diagrams set up below, derive expressions for V(x) and M(x). If you use the method of cuts then validate your answers using calculus or vice versa.arrow_forwardIt is required to treat 130 kmol/hr of chloroform-air feed gas mixture that contains 12% chloroform. It is required to remove 93% of chloroform using 150 kmol/hr of solvent that contains 99.6% water and 0.4% chloroform. The cross sectional area of the column is 0.8 m². Calculate the column height using the following data; kx'.a = 1.35 (kmol/m³.s (Ax)), and ky'.a = 0.06 (kmol/m³.s (Ay)), kx/ky = 1.35, and the equilibrium data are: X 0 0.0133 0.033 y 0 0.01 0.0266 0.049 0.064 0.0747 0.0933 0.1053 0.0433 0.06 0.0733 0.111 0.1 0.12 0.14arrow_forward
- ४ B: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) [T1] T₂ T3 [T] 1 = [0] 0 0 d dx dx) (ka)+4(ka) = dy -20xy, k = 1 + 0.3 T ge L=3cm, 4x= Ay B.Cs.: at x=0=LT=0°C at y=0-L T=10°C Fig. (2)arrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardFor the beam show below, draw A.F.D, S.F.D, B.M.D 6 kN/m 1 M B. 3 M Marrow_forward
- 1. Two long rods of the same diameter-one made of brass (k=85w/m.k) and the other made of copper (k=375 w/m.k) have one of their ends inserted into a furnace (as shown in the following figure). Both rods are exposed to the same environment. At a distance of 105 mm from the furnace, the temperature of the brass rod is 120°C. At what distance from the furnace will the same temperature be reached in the copper rod? Furnace 105 mm T₁ Brass rod ⑪ h Too- x2- Ti Copper rodarrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardمشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY