VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
11th Edition
ISBN: 9781259633133
Author: BEER
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 8.4, Problem 8.119P

(a)

To determine

Find the smallest combined mass m of the bucket for the block C will remain at rest.

(a)

Expert Solution
Check Mark

Answer to Problem 8.119P

The smallest combined mass m of the bucket is 9.46kg_.

Explanation of Solution

Given information:

The mass of the block C is mC=100kg.

The coefficient of static friction is μs=0.35.

The coefficient of kinetic friction is μk=0.25.

The drum B is frozen and cannot rotate.

Calculation:

Show the free-body diagram of the drum B as in Figure 1.

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 8.4, Problem 8.119P , additional homework tip  1

Find the angle of the belt wounded around the drum as follows;

β=120°×π180°=2π3rad

Find the tension T2 in terms of tension T1 using the equation.

T2T1=eμβ

Substitute mg for T1.

T2mg=eμβT2=mgeμβ (1)

Here, the acceleration due to gravity is g.

Consider the value of acceleration due to gravity is g=9.81m/s2.

Show the free-body diagram of the block C as in Figure 2.

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 8.4, Problem 8.119P , additional homework tip  2

At rest, the cable slips on the drum. The motion impending is along the x-axis. ().

μ=μs

Substitute 9.81m/s2 for g, 0.23 for μ and 2π3 for β in Equation (1).

T2=m×9.81×e0.35×2π3=20.41848m

Resolve the horizontal component of forces.

+Fx=0NmCgcos30°=0

Substitute 100 kg for mC and 9.81m/s2 for g.

N100×9.81×cos30°=0N=849.571N

Find the friction force (F) using the relation.

F=μsN

Substitute 0.35 for μs and 849.571 N for N.

F=0.35×849.571=297.35N

Resolve the vertical component of forces.

+Fy=0T2+FmCgsin30°=0

Substitute 20.41848m for T2, 297.35 N for F, and 100 kg for mC, and 9.81m/s2 for g.

20.41848m+297.35100×9.81×sin30°=020.41848m+297.35490.5=0m=9.46kg

Therefore, the smallest combined mass m of the bucket is 9.46kg_.

(b)

To determine

Find the smallest combined mass m of the bucket for the block C start moving up the incline.

(b)

Expert Solution
Check Mark

Answer to Problem 8.119P

The smallest combined mass m of the bucket is 167.2kg_.

Explanation of Solution

Given information:

The mass of the block C is mC=100kg.

The coefficient of static friction is μs=0.35.

The coefficient of kinetic friction is μk=0.25.

The drum B is frozen and cannot rotate.

Calculation:

Show the free-body diagram of the drum B as in Figure 3.

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 8.4, Problem 8.119P , additional homework tip  3

Find the angle of the belt wounded around the drum as follows;

β=120°×π180°=2π3rad

Find the tension T2 in terms of tension T1 using the equation.

T2T1=eμβ

Substitute mg for T2.

mgT1=eμβT1=mgeμβ (2)

Show the free-body diagram of the block C as in Figure 4.

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 8.4, Problem 8.119P , additional homework tip  4

When the block start moving up the incline; μ=μs.

No slipping occurs at block and drum. The motion impending is against the x-axis. ().

Substitute 9.81m/s2 for g, 0.35 for μ and 2π3 for β in Equation (2).

T1=m×9.81e0.35×2π3=4.71319m

Resolve the horizontal component of forces.

+Fx=0NmCgcos30°=0

Substitute 100 kg for mC and 9.81m/s2 for g.

N100×9.81×cos30°=0N=849.571N

Find the friction force (F) using the relation.

F=μsN

Substitute 0.35 for μs and 849.571 N for N.

F=0.35×849.571=297.35N

Resolve the vertical component of forces.

+Fy=0T1FmCgsin30°=0

Substitute 4.71319m for T1, 297.35 N for F, and 100 kg for mC, and 9.81m/s2 for g.

4.71319m297.35100×9.81×sin30°=04.71319m297.35490.5=0m=167.2kg

Therefore, the smallest combined mass m of the bucket is 167.2kg_.

(c)

To determine

Find the smallest combined mass m of the bucket for the block C continue moving up the incline at constant speed.

(c)

Expert Solution
Check Mark

Answer to Problem 8.119P

The smallest combined mass m of the bucket is 121kg_.

Explanation of Solution

Given information:

The mass of the block C is mC=100kg.

The coefficient of static friction is μs=0.35.

The coefficient of kinetic friction is μk=0.25.

The drum B is frozen and cannot rotate.

Calculation:

Show the free-body diagram of the drum B as in Figure 5.

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 8.4, Problem 8.119P , additional homework tip  5

Find the angle of the belt wounded around the drum as follows;

β=120°×π180°=2π3rad

Find the tension T2 in terms of tension T1 using the equation.

T2T1=eμβ

Substitute mg for T2.

mgT1=eμβT1=mgeμβ (3)

Show the free-body diagram of the block C as in Figure 6.

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 8.4, Problem 8.119P , additional homework tip  6

When the block start moving up the incline; μ=μk.

No slipping occurs at block and drum. The motion impending is against the x-axis. ().

Substitute 9.81m/s2 for g, 0.25 for μ and 2π3 for β in Equation (3).

T1=m×9.81e0.25×2π3=5.81130m

Resolve the horizontal component of forces.

+Fx=0NmCgcos30°=0

Substitute 100 kg for mC and 9.81m/s2 for g.

N100×9.81×cos30°=0N=849.571N

Find the friction force (F) using the relation.

F=μkN

Substitute 0.25 for μs and 849.571 N for N.

F=0.25×849.571=212.39275N

Resolve the vertical component of forces.

+Fy=0T1FmCgsin30°=0

Substitute 5.81130m for T1, 212.39275 N for F, and 100 kg for mC, and 9.81m/s2 for g.

5.81130m212.39275100×9.81×sin30°=05.81130m212.39275490.5=0m=121kg

Therefore, the smallest combined mass m of the bucket is 121kg_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
الثانية Babakt Momentum equation for Boundary Layer S SS -Txfriction dray Momentum equation for Boundary Layer What laws are important for resolving issues 2 How to draw. 3 What's Point about this.
R αι g The system given on the left, consists of three pulleys and the depicted vertical ropes. Given: ri J₁, m1 R = 2r; απ r2, J2, m₂ m1; m2; M3 J1 J2 J3 J3, m3 a) Determine the radii 2 and 3.
B: Solid rotating shaft used in the boat with high speed shown in Figure. The amount of power transmitted at the greatest torque is 224 kW with 130 r.p.m. Used DE-Goodman theory to determine the shaft diameter. Take the shaft material is annealed AISI 1030, the endurance limit of 18.86 kpsi and a factor of safety 1. Which criterion is more conservative? Note: all dimensions in mm. 1 AA Motor 300 Thrust Bearing Sprocket 100 9750 เอ

Chapter 8 Solutions

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS

Ch. 8.1 - The 10-kg block is attached to link AB and rests...Ch. 8.1 - Considering only values of less than 90,...Ch. 8.1 - Prob. 8.9PCh. 8.1 - Prob. 8.10PCh. 8.1 - The 50-lb block A and the 25-lb block B are...Ch. 8.1 - The 50-lb block A and the 25-lb block B are...Ch. 8.1 - Three 4-kg packages A, B, and C are placed on a...Ch. 8.1 - Prob. 8.14PCh. 8.1 - A uniform crate with a mass of 30 kg must be moved...Ch. 8.1 - A worker slowly moves a 50-kg crate to the left...Ch. 8.1 - Prob. 8.17PCh. 8.1 - Prob. 8.18PCh. 8.1 - Prob. 8.19PCh. 8.1 - Prob. 8.20PCh. 8.1 - Prob. 8.21PCh. 8.1 - Prob. 8.22PCh. 8.1 - Prob. 8.23PCh. 8.1 - Prob. 8.24PCh. 8.1 - Prob. 8.25PCh. 8.1 - Prob. 8.26PCh. 8.1 - The press shown is used to emboss a small seal at...Ch. 8.1 - The machine base shown has a mass of 75 kg and is...Ch. 8.1 - Prob. 8.29PCh. 8.1 - Prob. 8.30PCh. 8.1 - Prob. 8.31PCh. 8.1 - Prob. 8.32PCh. 8.1 - Prob. 8.33PCh. 8.1 - Prob. 8.34PCh. 8.1 - Prob. 8.35PCh. 8.1 - Prob. 8.36PCh. 8.1 - A 1.2-m plank with a mass of 3 kg rests on two...Ch. 8.1 - Two identical uniform boards, each with a weight...Ch. 8.1 - Prob. 8.39PCh. 8.1 - Prob. 8.40PCh. 8.1 - A 10-ft beam, weighing 1200 lb, is to be moved to...Ch. 8.1 - (a) Show that the beam of Prob. 8.41 cannot be...Ch. 8.1 - Two 8-kg blocks A and B resting on shelves are...Ch. 8.1 - Prob. 8.44PCh. 8.1 - Prob. 8.45PCh. 8.1 - Two slender rods of negligible weight are...Ch. 8.1 - Two slender rods of negligible weight are...Ch. 8.2 - The machine part ABC is supported by a...Ch. 8.2 - Prob. 8.49PCh. 8.2 - Prob. 8.50PCh. 8.2 - Prob. 8.51PCh. 8.2 - Prob. 8.52PCh. 8.2 - Solve Prob. 8.52 assuming that the end of the beam...Ch. 8.2 - Prob. 8.54PCh. 8.2 - Prob. 8.55PCh. 8.2 - Block A supports a pipe column and rests as shown...Ch. 8.2 - Prob. 8.57PCh. 8.2 - Prob. 8.58PCh. 8.2 - Prob. 8.59PCh. 8.2 - Prob. 8.60PCh. 8.2 - Prob. 8.61PCh. 8.2 - Prob. 8.62PCh. 8.2 - Prob. 8.63PCh. 8.2 - A 15 wedge is forced under a 50-kg pipe as shown....Ch. 8.2 - A 15 wedge is forced under a 50-kg pipe as shown....Ch. 8.2 - Prob. 8.66PCh. 8.2 - Prob. 8.67PCh. 8.2 - Prob. 8.68PCh. 8.2 - Prob. 8.69PCh. 8.2 - Prob. 8.70PCh. 8.2 - Prob. 8.71PCh. 8.2 - The position of the automobile jack shown is...Ch. 8.2 - Prob. 8.73PCh. 8.2 - Prob. 8.74PCh. 8.2 - Prob. 8.75PCh. 8.2 - Prob. 8.76PCh. 8.3 - A lever of negligible weight is loosely fitted...Ch. 8.3 - Prob. 8.78PCh. 8.3 - 8.79 and 8.80 The double pulley shown is attached...Ch. 8.3 - Prob. 8.80PCh. 8.3 - 8.81 and 8.82 The double pulley shown is attached...Ch. 8.3 - Prob. 8.82PCh. 8.3 - Prob. 8.83PCh. 8.3 - The block and tackle shown are used to lower a...Ch. 8.3 - Prob. 8.85PCh. 8.3 - Prob. 8.86PCh. 8.3 - Prob. 8.87PCh. 8.3 - 8.87 and 8.88 A lever AB of negligible weight is...Ch. 8.3 - Prob. 8.89PCh. 8.3 - Prob. 8.90PCh. 8.3 - Prob. 8.91PCh. 8.3 - 8.92 Knowing that a couple of magnitude 30 N·m is...Ch. 8.3 - Prob. 8.93PCh. 8.3 - Prob. 8.94PCh. 8.3 - Prob. 8.95PCh. 8.3 - Prob. 8.96PCh. 8.3 - Solve Prob. 8.93 assuming that the normal force...Ch. 8.3 - Prob. 8.98PCh. 8.3 - Prob. 8.99PCh. 8.3 - A 900-kg machine base is rolled along a concrete...Ch. 8.3 - Prob. 8.101PCh. 8.3 - Prob. 8.102PCh. 8.4 - A rope having a weight per unit length of 0.4...Ch. 8.4 - Prob. 8.104PCh. 8.4 - Two cylinders are connected by a rope that passes...Ch. 8.4 - Prob. 8.106PCh. 8.4 - Prob. 8.107PCh. 8.4 - Prob. 8.108PCh. 8.4 - A band belt is used to control the speed of a...Ch. 8.4 - Prob. 8.110PCh. 8.4 - The setup shown is used to measure the output of a...Ch. 8.4 - A flat belt is used to transmit a couple from drum...Ch. 8.4 - Prob. 8.113PCh. 8.4 - 8.114 Solve Prob. 8.113 assuming that the belt is...Ch. 8.4 - The speed of the brake drum shown is controlled by...Ch. 8.4 - The speed of the brake drum shown is controlled by...Ch. 8.4 - Prob. 8.117PCh. 8.4 - Bucket A and block C are connected by a cable that...Ch. 8.4 - Prob. 8.119PCh. 8.4 - Prob. 8.120PCh. 8.4 - 8.121 and 8.123 A cable is placed around three...Ch. 8.4 - Prob. 8.122PCh. 8.4 - Prob. 8.123PCh. 8.4 - Prob. 8.124PCh. 8.4 - Prob. 8.125PCh. 8.4 - Prob. 8.126PCh. 8.4 - Prob. 8.127PCh. 8.4 - The 10-lb bar AE is suspended by a cable that...Ch. 8.4 - Prob. 8.129PCh. 8.4 - Prove that Eqs. (8.13) and (8.14) are valid for...Ch. 8.4 - Complete the derivation of Eq. (8.15), which...Ch. 8.4 - Prob. 8.132PCh. 8.4 - Solve Prob. 8.113 assuming that the flat belt and...Ch. 8 - 8.134 and 8.135 The coefficients of friction are S...Ch. 8 - Prob. 8.135RPCh. 8 - Prob. 8.136RPCh. 8 - A slender rod with a length of L is lodged between...Ch. 8 - The hydraulic cylinder shown exerts a force of 3...Ch. 8 - Prob. 8.139RPCh. 8 - Bar AB is attached to collars that can slide on...Ch. 8 - Two 10 wedges of negligible weight are used to...Ch. 8 - A 10 wedge is used to split a section of a log....Ch. 8 - Prob. 8.143RPCh. 8 - A lever of negligible weight is loosely fitted...Ch. 8 - In the pivoted motor mount shown, the weight W of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Differences between Temporary Joining and Permanent Joining.; Author: Academic Gain Tutorials;https://www.youtube.com/watch?v=PTr8QZhgXyg;License: Standard Youtube License