Chemistry for Today: General, Organic, and Biochemistry
9th Edition
ISBN: 9781305960060
Author: Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.89E
Interpretation Introduction
Interpretation:
The change on the equilibrium of the given reaction on increasing temperature is to be predicted.
Concept Introduction:
According to Le Chatelier’s principle, in order to oppose any change, the equilibrium will shift to a particular side of the reaction. On increasing the temperature of an exothermic reaction, more heat is added to the reaction. In order to oppose this change, the equilibrium will shift to the reactant side. Also, when the concentration of product is increased, the equilibrium position shifts to the reactant side in order to oppose the change caused.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Chemistry for Today: General, Organic, and Biochemistry
Ch. 8 - Classify the following processes as spontaneous or...Ch. 8 - Classify the following processes as spontaneous or...Ch. 8 - Classify the following processes as exergonic or...Ch. 8 - Classify the following processes as exergonic or...Ch. 8 - Describe the energy and entropy changes that occur...Ch. 8 - Describe the energy and entropy changes that occur...Ch. 8 - Pick the example with the highest entropy from...Ch. 8 - Pick the example with the highest entropy from...Ch. 8 - You probably know that on exposure to air silver...Ch. 8 - Classify the following processes according to...
Ch. 8 - Classify the following processes according to...Ch. 8 - Describe the observations or measurements that...Ch. 8 - Prob. 8.13ECh. 8 - Consider the following hypothetical reaction: A+BC...Ch. 8 - Consider the following hypothetical reaction: A+BC...Ch. 8 - A reaction generates chlorine gas (Cl2) as a...Ch. 8 - A reaction generates hydrogen gas (H2) as a...Ch. 8 - Prob. 8.18ECh. 8 - Prob. 8.19ECh. 8 - In each of the following, which reaction mechanism...Ch. 8 - Which reaction mechanism assumptions are...Ch. 8 - Prob. 8.22ECh. 8 - Sketch energy diagrams to represent each of the...Ch. 8 - Prob. 8.24ECh. 8 - Use energy diagrams to compare catalyzed and...Ch. 8 - Prob. 8.26ECh. 8 - The following reactions are proposed. Make a rough...Ch. 8 - Prob. 8.28ECh. 8 - Prob. 8.29ECh. 8 - Suppose you are running a reaction and you want to...Ch. 8 - A reaction is started by mixing reactants. As time...Ch. 8 - A reaction is run at 10C and takes 3.7hours to go...Ch. 8 - What factor is more important than simply the...Ch. 8 - Prob. 8.34ECh. 8 - Describe the establishment of equilibrium in a...Ch. 8 - Prob. 8.36ECh. 8 - Prob. 8.37ECh. 8 - Colorless hydrogen gas (H2) and red-brown colored...Ch. 8 - Colorless N2O4 gas decomposes to form red-brown...Ch. 8 - Prob. 8.40ECh. 8 - Write an equilibrium expression for each of the...Ch. 8 - Prob. 8.42ECh. 8 - Prob. 8.43ECh. 8 - Prob. 8.44ECh. 8 - Prob. 8.45ECh. 8 - A sample of gaseous BrCl is allowed to decompose...Ch. 8 - At 600C, gaseous CO and Cl2 are mixed together in...Ch. 8 - A mixture of the gases NOCl, Cl2 and NO is allowed...Ch. 8 - Consider the following equilibrium constants....Ch. 8 - Prob. 8.50ECh. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Prob. 8.54ECh. 8 - Tell what will happen to each equilibrium...Ch. 8 - Tell what will happen to each equilibrium...Ch. 8 - The gaseous reaction 2HBr(g)H2(g)+Br2(g) is...Ch. 8 - Prob. 8.58ECh. 8 - Prob. 8.59ECh. 8 - Prob. 8.60ECh. 8 - Prob. 8.61ECh. 8 - Prob. 8.62ECh. 8 - Prob. 8.63ECh. 8 - Prob. 8.64ECh. 8 - Prob. 8.65ECh. 8 - Prob. 8.66ECh. 8 - Refer to Figure 8.10 and answer the questions....Ch. 8 - Refer to Figure 8.13 and answer the questions....Ch. 8 - Prob. 8.69ECh. 8 - Prob. 8.70ECh. 8 - Suppose you have two identical unopened bottles of...Ch. 8 - Someone once suggested that it is impossible to...Ch. 8 - A reaction takes place between an acid and...Ch. 8 - If the reaction:A+BC+D is designated as first...Ch. 8 - Prob. 8.75ECh. 8 - A book is held 6 feet above the floor and then...Ch. 8 - Prob. 8.77ECh. 8 - Prob. 8.78ECh. 8 - Prob. 8.79ECh. 8 - Prob. 8.80ECh. 8 - Prob. 8.81ECh. 8 - Which of the following is the best example of...Ch. 8 - Which is NOT an example of an endothermic change?...Ch. 8 - Which of the following processes is endothermic?...Ch. 8 - Which sentence best describes the following...Ch. 8 - By which of the following mechanisms does a...Ch. 8 - Which of the following is NOT true of reversible...Ch. 8 - Given the reaction: 2CO(g)+O2(g)2CO2(g) When there...Ch. 8 - Prob. 8.89ECh. 8 - Consider the reaction N2(g)+3H2(g)2NH3(g)+heat....Ch. 8 - Prob. 8.91ECh. 8 - Prob. 8.92ECh. 8 - For the reaction: H2(g)+Br2(g)2HBr(g), the...Ch. 8 - Prob. 8.94E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- . For the reaction 3O2(g)2O3(g)The equilibrium constant, K, has the value 1.121054at a particular temperature. a. What does the very small equilibrium constant indicate about the extent to which oxygen gas, O2(g), is converted to ozone gas, O3(g), at this temperature? b. If the equilibrium mixture is analyzed and [O2(g)]is found to be 3.04102M, what is the concentration of O3(g) in the mixture’?arrow_forward12.100 A reaction important in smog formation is O3(g)+NO(g)O2(g)+NO2(g)K=6.01034 (a) If the initial concentrations are [O3]=1.0106M,[NO]=1.0105M,[NO2]=2.5104M, and [O2]=8.2103M , is the system at equilibrium? If not, in which direction does the reaction proceed? (b) If the temperature is increased, as on a very warm day, will the concentrations of the products increase or decrease? (HINT: You may have to calculate the enthalpy change for the reaction to find out if it is exothermic or endothermic.)arrow_forward. Consider the reaction 2CO(g)+O2(g)2CO2(g)Suppose the system is already at equilibrium, and then an additional mole of CO2(g) is injected into the system at constant temperature. Does the amount of O2(g) in the system increase or decrease? Does the value of K for the reaction change?arrow_forward
- . Consider the following exothermic reaction at equilibrium: N2(g)+3H2(g)2NH3(g)Predict how the following changes affect the number of moles of each component of the system after equilibrium is re-established by completing the table. Complete the table with the terms increase, decrease, or no change. N2 H2 NH3 Add N2(g) Remove H2(g) Add NH3(g) Add Ne(g) (constant V) Increase the temperature Decrease the volume (constant T) Add a catalystarrow_forwardCalculate the equilibrium concentrations that result when 0.25 M O2 and 1.0 M HCl react and come to equilibrium. 4HCl(g)+O2(g)2Cl2+2H2O(g)Kc=3.11013arrow_forwardWhat is Le Chteliers principle? Consider the reaction 2NOCI(g)2NO(g)+Cl2(g) If this reaction is at equilibrium. what happens when the following changes occur? a. NOCI(g) is added. b. NO(g) is added. c. NOCI(g) is removed. d. Cl2(g) is removed. e. The container volume is decreased. For each of these changes, what happens to the value of K for the reaction as equilibrium is reached again? Give an example of a reaction for which the addition or removal of one of the reactants or products has no effect on the equilibrium position. In general, how will the equilibrium position of a gas-phase reaction be affected if the volume of the reaction vessel changes? Are there reactions that will not have their equilibria shifted by a change in volume? Explain. Why does changing the pressure in a rigid container by adding an inert gas not shift the equilibrium position for a gas-phase reaction?arrow_forward
- Consider the reaction N2O4(g)2NO2(g). Draw a graph illustrating the changes of concentrations of N2O4 and NO2 as equilibrium is approached. Describe how the rates of the forward and reverse reactions change as the mixture approaches dynamic equilibrium. Why is this called a dynamic equilibrium?arrow_forwardFor the reaction C6H6(g)+3H2(g)C6H12(g)+heat determine in what direction the equilibrium will be shifted by each of the following changes. Decreasing the concentration of H2 a. Increasing the concentration of C6H6 b. Decreasing the temperature c. Increasing the pressure by decreasing the volume of the containerarrow_forward. Consider the general reaction 2A(g)+B(s)C(g)+3D(g)H=+115kJ/molwhich has already come to equilibrium. Predict whether the equilibrium will shift to the left, will shift to the right, or will not be affected lithe changes indicated below are made to the system. a. Additional B(s) is added to the system. b. C(g) is removed from the system as it forms. c. The volume of the system is decreased by a factor of 2. d. The temperature is increased.arrow_forward
- . Hydrogen gas, oxygen gas, and water vapor are in equilibrium in a closed container. Hydrogen gas is injected into the container, and the system is allowed to return to equilibrium. Which of the following occurs? Explain your answer. 2H2(g)+O2(g)2H2O(g)a. The concentration of oxygen gas remains constant. b. The value for K increases. c. The concentration of oxygen gas increases. d. The concentration of water vapor increases. e. The value for K decreases.arrow_forwardConsider the equilibrium process depicted in Fig. 17.6. When does the equilibrium state occur?arrow_forward. Consider an equilibrium mixture consisting of H2O(g), CO(g). H2(g), and CO2(g) reacting in a closed vessel according to the equation H2O(g)+CO(g)H2(g)+CO2(g)a. You add more H2O to the flask. How does the new equilibrium concentration of each chemical compare to its origin al equilibrium concentration after equilibrium is re-established? Justify your answer. b. You add more H2to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY