(a)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their
The equilibrium constant for the above
Where,
•
•
•
•
•
•
•
•
Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
(b)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,
The equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•
Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
(c)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,
The equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•
Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
(d)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,
The equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•
Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
(e)
Interpretation:
The equilibrium expression for the given gaseous reaction is to be stated.
Concept Introduction:
The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,
The equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•
Answer to Problem 8.40E
The equilibrium constant for the given gaseous reaction is expressed as,
Explanation of Solution
The given gaseous reaction is represented as,
The concentration of the product
Therefore, the equilibrium constant for the above gaseous reaction is expressed as,
The equilibrium constant for the given gaseous reaction is expressed as,
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry for Today: General, Organic, and Biochemistry
- Decomposition of ammonium dichromate is shown in the designated series of photos. In a closed container this process reaches an equilibrium state. Write a balanced chemical equation for the equilibrium reaction. How is the equilibrium affected if more ammonium dichromate is added to the equilibrium system? more water vapor is added? more chromium(III) oxide is added? Decomposition of ammonium dichromate, for Question 4. Decomposition of (NH4)2Cr2O7. Orange, solid (NH4)2Cr2O7 (a) can be ignited by lighting a wick (b), which initiates decomposition (c) forming Cr2O3, the dark green solid in part (d), N2 gas, and water vapor. Energy is transferred to the surroundings by the process.arrow_forwardConsider the system SO3(g)SO2(g)+12 O2(g)H=98.9kJ (a) Predict whether the forward or reverse reaction will occur when the equilibrium is disturbed by 1. adding oxygen gas. 2. compressing the system at constant temperature. 3. adding argon gas. 4. removing SO2(g). 5. decreasing the temperature. (b) Which of the above factors will increase the value of K? Which will decrease it?arrow_forwardConsider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) + 6 H20(ℓ) ΔrH° = −1530.4 kJ/mol How will the amount of ammonia at equilibrium be affected by removing O2(g) without changing the total gas volume? adding N2(g) without changing the total gas volume? adding water without changing the total gas volume? expanding the container? increasing the temperature? Which of these changes (i to v) increases the value of K? Which decreases it?arrow_forward
- What is Le Chteliers principle? Consider the reaction 2NOCI(g)2NO(g)+Cl2(g) If this reaction is at equilibrium. what happens when the following changes occur? a. NOCI(g) is added. b. NO(g) is added. c. NOCI(g) is removed. d. Cl2(g) is removed. e. The container volume is decreased. For each of these changes, what happens to the value of K for the reaction as equilibrium is reached again? Give an example of a reaction for which the addition or removal of one of the reactants or products has no effect on the equilibrium position. In general, how will the equilibrium position of a gas-phase reaction be affected if the volume of the reaction vessel changes? Are there reactions that will not have their equilibria shifted by a change in volume? Explain. Why does changing the pressure in a rigid container by adding an inert gas not shift the equilibrium position for a gas-phase reaction?arrow_forwardCalculate the equilibrium concentrations that result when 0.25 M O2 and 1.0 M HCl react and come to equilibrium. 4HCl(g)+O2(g)2Cl2+2H2O(g)Kc=3.11013arrow_forwardHydrogen and carbon dioxide react at a high temperature to give water and carbon monoxide. H2(g) + CO2(g) H2O(g) + CO(g) (a) Laboratory measurements at 986 C show that there are 0.11 mol each of CO and H2O vapor and 0.087 mol each of H2 and CO2 at equilibrium in a 50.0-L container. Calculate the equilibrium constant for the reaction at 986 C. (b) Suppose 0.010 mol each of H2 and CO2 are placed in a 200.0-L container. When equilibrium is achieved at 986 C, what amounts of CO(g) and H2O(g), in moles, would be present? [Use the value of Kc from part (a).]arrow_forward
- . Consider an equilibrium mixture consisting of H2O(g), CO(g). H2(g), and CO2(g) reacting in a closed vessel according to the equation H2O(g)+CO(g)H2(g)+CO2(g)a. You add more H2O to the flask. How does the new equilibrium concentration of each chemical compare to its origin al equilibrium concentration after equilibrium is re-established? Justify your answer. b. You add more H2to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forward. Consider the following exothermic reaction at equilibrium: N2(g)+3H2(g)2NH3(g)Predict how the following changes affect the number of moles of each component of the system after equilibrium is re-established by completing the table. Complete the table with the terms increase, decrease, or no change. N2 H2 NH3 Add N2(g) Remove H2(g) Add NH3(g) Add Ne(g) (constant V) Increase the temperature Decrease the volume (constant T) Add a catalystarrow_forwardWrite equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations. (a) 2 H2O2(g) 2 H2O(g) + O2(g) (b) CO(g) + O2g CO2(g) (c) C(s) + CO2(g) 2 CO(g) (d) NiO(s) + CO(g) Ni(s) + CO2(g)arrow_forward
- Based on the diagrams, chemical reaction, and reaction conditions depicted in Problem 9-81, for which of the diagrams is the numerical value of the equilibrium constant the smallest?arrow_forwardSulfuryl chloride, SO2Cl2 is used as a reagent in the synthesis of organic compounds. When heated to a sufficiently high temperature, it decomposes to SO2 and Cl2. SO2Cl2(g) SO2(g) + Cl2(g)Kc = 0.045 at 375 C (a) A 10.0-L flask containing 6.70 g of SO2Cl2 is heated to 375 C. What is the concentration of each of the compounds in the system when equilibrium is achieved? What fraction of SO2Cl2 has dissociated? (b) What are the concentrations of SO2Cl2, SO2, and Cl2 at equilibrium in the 10.0-L flask at 375 C if you begin with a mixture of SO2Cl2 (6.70 g) and Cl2 (0.10 atm)? What fraction of SO2Cl2 has dissociated? (c) Compare the fractions of SO2Cl2 in parts (a) and (b). Do they agree with your expectations based on Le Chateliers principle?arrow_forwardWrite equilibrium expressions for each of the following heterogeneous equilibria. CaCO,(s) ** Ca2+(aq) + COf "(aq) AgCl(s) «=* Ag+(aq) + Cl_(aq) Mg5(PO4)2(s) «=* 3 Mg2+(aq) + 2 PO4J’(aq) Zn(s) + Cu*+(aq) «=* Cu(s) + Zn2+(aq)arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning