
(a)
Interpretation:
In the given set of species which will be smaller in size has to be identified.
Concept Introduction:
- The distance between the nucleus and the valence shell of a cation or an anion is known as ionic radius. An ion is formed by either loss or gain of electrons from its valence shell.
- As we move down the group in periodic table the ionic radius increases as the electrons are added to new subshell. As we move across the period the ionic radius increases as the electrons are added to the same subshell.
- An anion is formed when an electron is added to the valence shell of an atom. The anion has a net negative charge in it. In anion the extra electron added occupies more space and maximizes the shielding.
- Anions will have larger size compared to cations.
- The reduction in the effective nuclear charge on the electron cloud, due to a difference in the attraction forces of the electrons in the nucleus is known as shielding effect
- When the proton number is greater than the electron, the size of the ion will be smaller due to less shielding. When the proton number is lesser than the electron, the size of the ion will be larger due to more shielding.
- A cation is formed when an electron is lost by an atom from its valence shell. The cation has a net positive charge. In cation the shielding decreases as the electron is removed from the valence shell.
- If the total number of electrons is less than the total number of protons in the ion, then the protons present can effectively attract the valence shell decreasing the size of the ion and vice-versa.
- The trend in periodic table can be described as well. As we move down the group the ionic radius decreases as the electrons are added to a new shell. But as we move across a period in periodic table the ionic radius increases as the electrons are added to the same subshell.
(a)

Answer to Problem 8.43QP
In (a)
Explanation of Solution
The number of electrons and protons in the given set of species (a) is,
Species | Total number of Electrons | Total number of Protons |
17 | 17 | |
18 | 17 |
The total number of electrons and protons present for the given species are found out and presented in the above table. From this we can see that total number of protons in all the given species is same, but the total numbers of electrons are different.
By comparing the total number of protons and electrons in the table given in the previous step and as comparing to the size of atom size of anion is larger. And also here the proton number is lesser than the electron in
(b)
Interpretation:
In the given set of species which will be smaller in size has to be identified.
Concept Introduction:
- The distance between the nucleus and the valence shell of a cation or an anion is known as ionic radius. An ion is formed by either loss or gain of electrons from its valence shell.
- As we move down the group in periodic table the ionic radius increases as the electrons are added to new subshell. As we move across the period the ionic radius increases as the electrons are added to the same subshell.
- An anion is formed when an electron is added to the valence shell of an atom. The anion has a net negative charge in it. In anion the extra electron added occupies more space and maximizes the shielding.
- Anions will have larger size compared to cations.
- The reduction in the effective nuclear charge on the electron cloud, due to a difference in the attraction forces of the electrons in the nucleus is known as shielding effect
- When the proton number is greater than the electron, the size of the ion will be smaller due to less shielding. When the proton number is lesser than the electron, the size of the ion will be larger due to more shielding.
- A cation is formed when an electron is lost by an atom from its valence shell. The cation has a net positive charge. In cation the shielding decreases as the electron is removed from the valence shell.
- If the total number of electrons is less than the total number of protons in the ion, then the protons present can effectively attract the valence shell decreasing the size of the ion and vice-versa.
- The trend in periodic table can be described as well. As we move down the group the ionic radius decreases as the electrons are added to a new shell. But as we move across a period in periodic table the ionic radius increases as the electrons are added to the same subshell.
(b)

Answer to Problem 8.43QP
In (b)
Explanation of Solution
The number of electrons and protons in the given set of species (b)
Species | Total number of Electrons | Total number of Protons |
11 | 11 | |
10 | 11 |
The total number of electrons and protons present for the given species are found out and presented in the above table. From this we can see that total numbers of protons in all the given species are same, but the total numbers of electrons are different.
By comparing the total number of protons and electrons in the table given in the previous step it is clear that the number of proton is greater than the electron in
(c)
Interpretation:
In the given set of species which will be smaller in size has to be identified.
Concept Introduction:
- The distance between the nucleus and the valence shell of a cation or an anion is known as ionic radius. An ion is formed by either loss or gain of electrons from its valence shell.
- As we move down the group in periodic table the ionic radius increases as the electrons are added to new subshell. As we move across the period the ionic radius increases as the electrons are added to the same subshell.
- An anion is formed when an electron is added to the valence shell of an atom. The anion has a net negative charge in it. In anion the extra electron added occupies more space and maximizes the shielding.
- Anions will have larger size compared to cations.
- The reduction in the effective nuclear charge on the electron cloud, due to a difference in the attraction forces of the electrons in the nucleus is known as shielding effect
- When the proton number is greater than the electron, the size of the ion will be smaller due to less shielding. When the proton number is lesser than the electron, the size of the ion will be larger due to more shielding.
- A cation is formed when an electron is lost by an atom from its valence shell. The cation has a net positive charge. In cation the shielding decreases as the electron is removed from the valence shell.
- If the total number of electrons is less than the total number of protons in the ion, then the protons present can effectively attract the valence shell decreasing the size of the ion and vice-versa.
- The trend in periodic table can be described as well. As we move down the group the ionic radius decreases as the electrons are added to a new shell. But as we move across a period in periodic table the ionic radius increases as the electrons are added to the same subshell.
(c)

Answer to Problem 8.43QP
In (c)
Explanation of Solution
The number of electrons and protons in the given set of species (c)
Species | Total number of Electrons | Total number of Protons |
8 | 10 | |
16 | 18 |
The total number of electrons and protons present for the given species are found out and presented in the above table.
The given two species belong to group “6A” of periodic table. The oxygen atom comes before the sulphur atom when we move down the periodic table. As discussed above, when we move down the group the ionic radius increases because the electrons are added to a new subshell. Hence,
(d)
Interpretation:
In the given set of species which will be smaller in size has to be identified.
Concept Introduction:
- The distance between the nucleus and the valence shell of a cation or an anion is known as ionic radius. An ion is formed by either loss or gain of electrons from its valence shell.
- As we move down the group in periodic table the ionic radius increases as the electrons are added to new subshell. As we move across the period the ionic radius increases as the electrons are added to the same subshell.
- An anion is formed when an electron is added to the valence shell of an atom. The anion has a net negative charge in it. In anion the extra electron added occupies more space and maximizes the shielding.
- Anions will have larger size compared to cations.
- The reduction in the effective nuclear charge on the electron cloud, due to a difference in the attraction forces of the electrons in the nucleus is known as shielding effect
- When the proton number is greater than the electron, the size of the ion will be smaller due to less shielding. When the proton number is lesser than the electron, the size of the ion will be larger due to more shielding.
- A cation is formed when an electron is lost by an atom from its valence shell. The cation has a net positive charge. In cation the shielding decreases as the electron is removed from the valence shell.
- If the total number of electrons is less than the total number of protons in the ion, then the protons present can effectively attract the valence shell decreasing the size of the ion and vice-versa.
- The trend in periodic table can be described as well. As we move down the group the ionic radius decreases as the electrons are added to a new shell. But as we move across a period in periodic table the ionic radius increases as the electrons are added to the same subshell.
(d)

Answer to Problem 8.43QP
In (d)
Explanation of Solution
The number of electrons and protons in the given set of species (d)
Species | Total number of Electrons | Total number of Protons |
10 | 12 | |
10 | 13 |
The total number of electrons and protons present for the given species are found out and presented in the above table. From this we can see that total number of electrons in all the given ions is same, but the total numbers of protons are different.
The number of proton in
(e)
Interpretation:
In the given set of species which will be smaller in size has to be identified.
Concept Introduction:
- The distance between the nucleus and the valence shell of a cation or an anion is known as ionic radius. An ion is formed by either loss or gain of electrons from its valence shell.
- As we move down the group in periodic table the ionic radius increases as the electrons are added to new subshell. As we move across the period the ionic radius increases as the electrons are added to the same subshell.
- An anion is formed when an electron is added to the valence shell of an atom. The anion has a net negative charge in it. In anion the extra electron added occupies more space and maximizes the shielding.
- Anions will have larger size compared to cations.
- The reduction in the effective nuclear charge on the electron cloud, due to a difference in the attraction forces of the electrons in the nucleus is known as shielding effect
- When the proton number is greater than the electron, the size of the ion will be smaller due to less shielding. When the proton number is lesser than the electron, the size of the ion will be larger due to more shielding.
- A cation is formed when an electron is lost by an atom from its valence shell. The cation has a net positive charge. In cation the shielding decreases as the electron is removed from the valence shell.
- If the total number of electrons is less than the total number of protons in the ion, then the protons present can effectively attract the valence shell decreasing the size of the ion and vice-versa.
- The trend in periodic table can be described as well. As we move down the group the ionic radius decreases as the electrons are added to a new shell. But as we move across a period in periodic table the ionic radius increases as the electrons are added to the same subshell.
(e)

Answer to Problem 8.43QP
In (e)
Explanation of Solution
The number of electrons and protons in the given set of species (e)
Species | Total number of Electrons | Total number of Protons |
79 | 79 | |
76 | 79 |
The total number of electrons and protons present for the given species are found out and presented in the above table. From this we can see that total number of protons in the given species is same, but the total numbers of electrons are different.
By comparing the total number of protons and electrons in the table given in the previous step it is clear that the number of proton is greater than the electron in
Want to see more full solutions like this?
Chapter 8 Solutions
General Chemistry
- Understanding how substituents activate Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation HN NH2 Check X (Choose one) (Choose one) (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Aarrow_forwardIdentifying electron-donating and electron-withdrawing effects on benzene For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Inductive Effects Resonance Effects Overall Electron-Density Molecule CF3 O donating O donating O withdrawing O withdrawing O no inductive effects O no resonance effects electron-rich electron-deficient O similar to benzene CH3 O donating O withdrawing O no inductive effects O donating O withdrawing Ono resonance effects O electron-rich O electron-deficient O similar to benzene Explanation Check Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward* Hint: Think back to Chem 1 solubility rules. Follow Up Questions for Part B 12. What impact do the following disturbances to a system at equilibrium have on k, the rate constant for the forward reaction? Explain. (4 pts) a) Changing the concentration of a reactant or product. (2 pts) b) Changing the temperature of an exothermic reaction. (2 pts) ofarrow_forward
- Draw TWO general chemical equation to prepare Symmetrical and non-Symmetrical ethers Draw 1 chemical reaction of an etherarrow_forwardPlease help me with the following questions for chemistry.arrow_forwardDraw the chemical structure [OR IUPAC name] of the following: a- m-chloromethoxybenzene b.arrow_forward
- Show by chemical equation the reaction of [HCN] and [CH3MgBr] with any alarrow_forwardGive the chemical equation for the preparation of: -Any aldehyde -Any keytonearrow_forward+ C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward
- → Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forwardFor each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





