
(a)
Interpretation:
The mass of the dopant required to obtain p-type semiconductor of 1 metric ton silicon.
Concept introduction:
The p-type semiconductor is obtained by doping an impurity having 3 valence electron like boron (B), Aluminum (Al) and gallium (Ga) to silicon (4 electron system). Thus, the covalent bond between the substrate and dopant always have one less electron, which causes a positive hole in the system and conductivity generated. However on the amount of dopant the silicon semiconductor may be subdivided into two category, light and heavy semiconductor.
In light silicon semiconductor 1 impurity atom is present per 1,000,000,000 or ppb (parts per billion) silicon atoms. On the other hand for generation of heavy silicon semiconductor 1 atom of impurity needed per 1,000 atom of silicon.

Answer to Problem 8.104PAE
Solution:
The amount of boron, the impurity,is required to generate light and heavy p-type 1 metric ton silicon semiconductor is
Explanation of Solution
1 metric ton of silicon =
On conversion of
1 mole of silicon is equivalent to
For making light semiconductor 1 atom of dopant is required per
Henceforth, number of dopant atoms required is
The numbers of moles of boron required as dopant are
The mass of boron dopant required
Henceforth to make the boron incorporated light p-type semiconductor per metric ton of silicon required
To prepare heavy silicon semiconductor number of dopant atoms required is
The numbers of moles of boron required as dopant are
The mass of boron dopant required
Henceforth to make the boron incorporated heavy p-type semiconductor per metric ton of silicon required
(b)
Interpretation:
The mole fraction of the dopant to obtain p-type silicon semiconductor is to be determined.
Concept introduction:
The mole number of the impurity or dopant present per unit of total mole number of the dopant and substrate in a semiconductor is called the mole fraction of the dopant. It can be expressed as-

Answer to Problem 8.104PAE
Solution:
The mole fraction of the dopant i.e. boron in p-type light and heavy silicon semiconductor is and respectively.
Explanation of Solution
For light silicon p-type semiconductor doped by boron the mole number of dopant and substrate are
On plugging the values in the equation,
So,
Thus in the light semiconductor the mole fraction of the dopant is
On the other side for heavy semiconductor doped by boron the mole number of dopant and substrate are 35.713 and
On plugging the values in the equation,
So,
Thus in the light semiconductor the mole fraction of the dopant is
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry for Engineering Students
- Please answer the questions and provide detailed explanations.arrow_forwardShow reaction mechanism. Don't give Ai generated solutionarrow_forwardPlease answer the questions and provide detailed explanation. Please also include the Hydrogens that are on the molecule to show how many signals there are.arrow_forward
- Capp aktiv.com Part of Speech Table for Assi x Aktiv Learning App K Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 232 of 10 10: Mg Select to Add Arrows Br O H :0 CI:O H Mg THE + dy Undo Reset Done Brarrow_forwardPlease answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forwardNeed help with witharrow_forward
- Please answer the questions and provide detailed explanations.arrow_forwardsolve pleasearrow_forwardPlease answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forward
- Please do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forwardPlease answer the question and provide detailed explanations.arrow_forwardAll of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





