
(a)
Interpretation:
The mass of the dopant required to obtain p-type semiconductor of 1 metric ton silicon.
Concept introduction:
The p-type semiconductor is obtained by doping an impurity having 3 valence electron like boron (B), Aluminum (Al) and gallium (Ga) to silicon (4 electron system). Thus, the covalent bond between the substrate and dopant always have one less electron, which causes a positive hole in the system and conductivity generated. However on the amount of dopant the silicon semiconductor may be subdivided into two category, light and heavy semiconductor.
In light silicon semiconductor 1 impurity atom is present per 1,000,000,000 or ppb (parts per billion) silicon atoms. On the other hand for generation of heavy silicon semiconductor 1 atom of impurity needed per 1,000 atom of silicon.

Answer to Problem 8.104PAE
Solution:
The amount of boron, the impurity,is required to generate light and heavy p-type 1 metric ton silicon semiconductor is
Explanation of Solution
1 metric ton of silicon =
On conversion of
1 mole of silicon is equivalent to
For making light semiconductor 1 atom of dopant is required per
Henceforth, number of dopant atoms required is
The numbers of moles of boron required as dopant are
The mass of boron dopant required
Henceforth to make the boron incorporated light p-type semiconductor per metric ton of silicon required
To prepare heavy silicon semiconductor number of dopant atoms required is
The numbers of moles of boron required as dopant are
The mass of boron dopant required
Henceforth to make the boron incorporated heavy p-type semiconductor per metric ton of silicon required
(b)
Interpretation:
The mole fraction of the dopant to obtain p-type silicon semiconductor is to be determined.
Concept introduction:
The mole number of the impurity or dopant present per unit of total mole number of the dopant and substrate in a semiconductor is called the mole fraction of the dopant. It can be expressed as-

Answer to Problem 8.104PAE
Solution:
The mole fraction of the dopant i.e. boron in p-type light and heavy silicon semiconductor is and respectively.
Explanation of Solution
For light silicon p-type semiconductor doped by boron the mole number of dopant and substrate are
On plugging the values in the equation,
So,
Thus in the light semiconductor the mole fraction of the dopant is
On the other side for heavy semiconductor doped by boron the mole number of dopant and substrate are 35.713 and
On plugging the values in the equation,
So,
Thus in the light semiconductor the mole fraction of the dopant is
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry for Engineering Students
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





