Concept explainers
8–51 to
8–54 For the pressure cylinder defined in the problem specified in the table, the gas pressure is cycled between zero and pg. Determine the fatigue factor of safety for the bolts using the following failure criteria:
(a) Goodman.
(b) Gerber.
(c) ASME-elliptic.
Problem Number | Originating Problem Number |
8–54 | 8–36 |
(a)
The fatigue factor of safety for the bolts using Goodman criteria.
Answer to Problem 54P
The fatigue factor of safety for the bolts using Goodman criteria is
Explanation of Solution
Write the expression of the length of the material squeeze between the bolt face and washer face.
Here, the length of the material squeeze between the bolt face and washer face is
Write the expression for the length of the bolt.
Here, the length of bolt is
Write the expression of the threaded length for hexagonal bolt.
Here, the threaded length is
Write the expression of the length of the unthreaded portion in grip.
Here, the length of the unthreaded portion in the grip is
Write the expression of the length of the threaded portion in grip.
Here, the length of threaded portion in the grip is
Write the expression of the major area diameter.
Here, the nominal diameter of the bolt is
Write the expression of the stiffness for the bolt.
Here, the bolt stiffness is
Write the expression of stiffness for the steel cylinder.
Here, the stiffness of the steel cylinder is
Write the expression for the midpoint of the complete joint.
Here, the midpoint of the joint is
Write the expression of the thickness of the upper frustum.
Here, the thickness of upper frustum of the gasket is
Write the expression for the effective sealing diameter of the gasket sealing in upper frustum.
Here, the effective sealing diameter of upper frustum of the gasket sealing is
Write the expression for the stiffness of the upper frustum of cast iron vessel.
Here, the stiffness of the cast-iron pressure vessel in the upper frustum is
Write the expression for the stiffness of the lower frustum of the cast iron vessel.
Here, the stiffness of the cast-iron pressure vessel in the lower frustum is
Write the expression for the stiffness of the member or assembly.
Here, the stiffness of the member is
Write the expression of joint constant.
Here, the joint constant is
Write the expression of initial tension in the bolt.
Here, the tensile stress area is
Write the expression of the effective area of the cylinder.
Here, the effective area of the cylinder is
Write the expression for the total force acting on the assembly.
Here, the total load acting on the assembly is
Write the expression for the load acting on each bolt.
Here, the number of bolt is
Write the expression for the initial stress in the bolt.
Write the expression for the average stress.
Write the expression for the mean stress.
Write the expression for factor of safety by Goodman criteria.
Here, the ultimate strength is
Conclusion:
Substitute
Refer to Table
Substitute
Substitute
Substitute
Substitute
Substitute
Refer to Table
Refer to Table
Substitute
Substitute
Substitute
Substitute
Substitute
Refer to Table
Substitute
Substitute
Substitute
Substitute
Refer to Table
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Refer to Table
Refer to Table 8.11 “Metric Mechanical-Property Classes for Steel Bolts, Screws, and Studs” to obtain
Substitute
Thus, the fatigue factor of safety for the bolts using Goodman criteria is
(b)
The fatigue factor of safety for the bolts using Gerber criteria.
Answer to Problem 54P
The fatigue factor of safety for the bolts using Gerber criteria is
Explanation of Solution
Write the expression for the factor of safety using Gerber criteria.
Conclusion:
Substitute
Thus, the fatigue factor of safety for the bolts using Gerber criteria is
(c)
The fatigue factor of safety for the bolts using ASME-elliptic criteria.
Answer to Problem 54P
The fatigue factor of safety for the bolts using ASME-elliptic criteria is
Explanation of Solution
Write the expression for the factor of safety using ASME-elliptic criteria.
Conclusion:
Substitute
Thus, the fatigue factor of safety for the bolts using ASME-elliptic criteria is
Want to see more full solutions like this?
Chapter 8 Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
- I tried to go through this problem but I don't know what I'm doing wrong can you help me?arrow_forwardGenerate the kinematic diagram of the following mechanisms using the given symbols. Then, draw their graphs and calculate their degrees of freedom (DoF) using Gruebler's formula. PUNTO 2. PUNTO 3. !!!arrow_forwardCreate a schematic representation of the following mechanisms using the given symbols and draw their graphs. Then, calculate their degrees of freedom (DoF) using Gruebler's formula. PUNTO 6. PUNTO 7.arrow_forward
- how the kinematic diagram of the following mechanisms would be represented using the given symbols? PUNTO 0. PUNTO 1. °arrow_forwardCreate a schematic representation of the following mechanisms using the given symbols and draw their graphs. Then, calculate their degrees of freedom (DOF) using Gruebler's formula. PUNTO 4. PUNTO 5. (0) Groundarrow_forwardDraw the graph of ALL the mechanisms and calculate their DoF using Gruebler's formula. PUNTO 0. PUNTO 1.arrow_forward
- An adjustable support. Construction designed to carry vertical load and is adjusted by moving the blue attachment vertically. The link is articulated at both ends (free to rotate) and can therefore only transmit power axially. Analytically calculate the force to which the link is subjected? Calculate analytically rated voltage in the middle of the link.? F=20kN Alpha 30 deg Rel 225 Mpans:5arrow_forwardA swivel crane where the load is moved axially along the beam through the wagon to which the hook is attached. Round bar with a diameter of ∅30 mm. The support beam is articulated at both ends (free to rotate) and can therefore only transmit force axially. Calculate reaction force in the x-direction at point A? Calculate analytical reaction force in the y-direction of point A? Calculate nominal stress in the middle of the support beam?Lengt 5 mAlfa 25 degX=1.5mIPE300-steelmass:1000 kgarrow_forwardgot wrong answers help pleasearrow_forward
- A crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom cc00 BY NC SA ↑ Z C b B У a D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in 4.5 in The tension in rope AB is 383 x lb The tension in rope AC is 156 x lb The tension in rope AD is 156 x lbarrow_forwardA block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z C D (c, 0, d) (a, 0, b) A B y f m cc 10 BY NC SA 2016 Eric Davishahl x Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m с 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is 68.8 The compressive force in bar AB is 364 × kg. × N. The tension in cable BC is 393 × N.arrow_forwardThe airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. 0 a.) If 11.3°, determine the thrust and lift forces = required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. 20. YAAY' Farag Ө Fthrust CC + BY NC SA 2013 Michael Swanbom Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to 101,855 ☑ lbs. The lift force is equal to 141,282 ☑ lbs. Part (b) The trajectory angle 0 is equal to 7.31 ✓ deg. The lift force is equal to 143,005 ☑ lbs.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY