
The yielding factor of safety.
The load factor.
The joint separation factor.

Answer to Problem 40P
The yielding factor of safety is
The load factor is
The joint separation factor is
Explanation of Solution
Write the expression tensile load per bolt.
Here, tensile load per bolt is
Write the expression for cross section area of sealing.
Here, area is
Write the expression for grip.
Here, total thickness of plate and washer is
Write the expression for length of bolt.
Write the expression for threaded length.
Here threaded length is
Write the expression for area of unthreaded portion.
Here, the area of unthreaded portion is
Write the expression for length of unthreaded portion in grip.
Here, the length of unthreaded portion in grip is
Write the expression for length of threaded portion in grip
Here, length of threaded portion in grip is
Write the expression for bolt stiffness.
Here, bolt stiffness is
Write the expression for stiffness of top frusta.
Here, the stiffness of top frusta is
Write the expression for total spring rate of the member.
Here, the total spring rate of the member is
Write the expression for joint stiffness constant.
Here, joint stiffness constant is
Write the expression for preload.
Here, preload is
Write the expression for load factor
Here, load factor is
Write the expression for yielding factor of safety.
Here, yielding factor of safety is
Write the expression for load factor guarding against joint separation.
Here, load factor guarding against joint is
Write the expression for total external load.
Here, the total load is
Write the expression for load on the bolt.
Here, the load on the bolt is
Write the expression for cross section area of the cylinder.
Here, area of cylinder is
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Refer to table 8-1 “Diameter and areas of unified screw threads UNC and UNF”, obtain tensile stress area for nominal diameter of
Refer to table 8-9 “SAE specification for steel”, to obtain the minimum proof strength as
Substitute
Figure (1) shows the frustum of the cone for compressive load on the joint.
Figure-(1)
Write the expression for thickness of frusta.
Write the expression for diameter of the top frusta.
Substitute
Write the expression for thickness of middle frusta.
Write the expression for diameter of the middle frusta.
Substitute
Write the expression for thickness of lower frusta.
Write the expression for diameter of the lower frusta.
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus the load factor is
Substitute
Thus the yielding factor of safety is
Substitute
Thus the load factor against joint separation is
Want to see more full solutions like this?
Chapter 8 Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
- 1. The rotating steel shaft is simply supported by bearings at points of B and C, and is driven by a spur gear at D, which has a 6-in pitch diameter. The force F from the drive gear acts at a pressure angle of 20°. The shaft transmits a torque to point A of TA =3000 lbĘ in. The shaft is machined from steel with Sy=60kpsi and Sut=80 kpsi. (1) Draw a shear force diagram and a bending moment diagram by F. According to your analysis, where is the point of interest to evaluate the safety factor among A, B, C, and D? Describe the reason. (Hint: To find F, the torque Tд is generated by the tangential force of F (i.e. Ftangential-Fcos20°) When n=2.5, K=1.8, and K₁ =1.3, determine the diameter of the shaft based on (2) static analysis using DE theory (note that fatigue stress concentration factors need to be used for this question because the loading condition is fatigue) and (3) a fatigue analysis using modified Goodman. Note) A standard diameter is not required for the questions. 10 in Darrow_forward3 N2=28 P(diametral pitch)=8 for all gears Coupled to 25 hp motor N3=34 Full depth spur gears with pressure angle=20° N₂=2000 rpm (1) Compute the circular pitch, the center-to-center distance, and base circle radii. (2) Draw the free body diagram of gear 3 and show all the forces and the torque. (3) In mounting gears, the center-to-center distance was reduced by 0.1 inch. Calculate the new values of center-to-center distance, pressure angle, base circle radii, and pitch circle diameters. (4)What is the new tangential and radial forces for gear 3? (5) Under the new center to center distance, is the contact ratio (mc) increasing or decreasing?arrow_forward2. A flat belt drive consists of two 4-ft diameter cast-iron pulleys spaced 16 ft apart. A power of 60 hp is transmitted by a pulley whose speed is 380 rev/min. Use a service factor (Ks) pf 1.1 and a design factor 1.0. The width of the polyamide A-3 belt is 6 in. Use CD=1. Answer the following questions. (1) What is the total length of the belt according to the given geometry? (2) Find the centrifugal force (Fc) applied to the belt. (3) What is the transmitted torque through the pulley system given 60hp? (4) Using the allowable tension, find the force (F₁) on the tight side. What is the tension at the loose side (F2) and the initial tension (F.)? (5) Using the forces, estimate the developed friction coefficient (f) (6) Based on the forces and the given rotational speed, rate the pulley set. In other words, what is the horse power that can be transmitted by the pulley system? (7) To reduce the applied tension on the tight side, the friction coefficient is increased to 0.75. Find out the…arrow_forward
- The tooth numbers for the gear train illustrated are N₂ = 24, N3 = 18, №4 = 30, №6 = 36, and N₁ = 54. Gear 7 is fixed. If shaft b is turned through 5 revolutions, how many turns will shaft a make? a 5 [6] barrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forward
- CE-112 solve this problem step by step and give me the correct answer pleasearrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning




