Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8, Problem 53RE

(a)

To determine

To find area of region R

(a)

Expert Solution
Check Mark

Answer to Problem 53RE

Area of Region R 1.366

Explanation of Solution

Given:

Region R in the first quadrant enclosed by the y-axis and the graphs of y=2+sinx and y=secx

Concept Used:

Area between the curves

   A= 0 153 125 [ 2+sinxsecx ]  dx

   First, calculating the corresponding indefinete integral

   ( sinxsecx+2 )dx=2xln( | tan( x 2 + π 4 ) | )cosx

   Acoording to the fundamental theorem of calculas  a b F( x )dx =f( b )f( a ), 

   Therefore,

   ( 2xln( | tan( x 2 + π 4 ) | )cosx ) | (x= 153 125 ) =ln( tan( 153 125 + π 4 ) )cos( 153 125 )+ 306 125

   ( 2xln( | tan( x 2 + π 4 ) | )cosx ) | (x=0) =ln( tan( 0+ π 4 ) )cos( 0 )+0=1

   0 153 125 [ 2+sinxsecx ]  dx=( 2xln( | tan( x 2 + π 4 ) | )cosx ) | (x= 153 125 ) ( 2xln( | tan( x 2 + π 4 ) | )cosx ) | (x=0)

                                       =ln( tan( 153 125 + π 4 ) )cos( 153 125 )+ 306 125 ( 1 )

                                       =ln( tan( 153 125 + π 4 ) )cos( 153 125 )+ 306 125 +1

                                       =ln( tan( 153 125 + π 4 ) )cos( 153 125 )+ 431 125 1.36604180418083

Given region R is in the first quadrant by the y-axis and the graphs of y=2+sinx and y=secx

Getting limits by solving using graphing calculator

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 8, Problem 53RE

Therefore,

Limits are a=0 b=1.224=153125

Calculation:

Area of region R,

   A= 0 153 125 [ 2+sinxsecx ]  dx

   First, calculating the corresponding indefinete integral

   ( sinxsecx+2 )dx=2xln( | tan( x 2 + π 4 ) | )cosx

   Acoording to the fundamental theorem of calculas  a b F( x )dx =f( b )f( a ), 

   Therefore,

   ( 2xln( | tan( x 2 + π 4 ) | )cosx ) | (x= 153 125 ) =ln( tan( 153 125 + π 4 ) )cos( 153 125 )+ 306 125

   ( 2xln( | tan( x 2 + π 4 ) | )cosx ) | (x=0) =ln( tan( 0+ π 4 ) )cos( 0 )+0=1

   0 153 125 [ 2+sinxsecx ]  dx=( 2xln( | tan( x 2 + π 4 ) | )cosx ) | (x= 153 125 ) ( 2xln( | tan( x 2 + π 4 ) | )cosx ) | (x=0)

                                       =ln( tan( 153 125 + π 4 ) )cos( 153 125 )+ 306 125 ( 1 )

                                       =ln( tan( 153 125 + π 4 ) )cos( 153 125 )+ 306 125 +1

                                       =ln( tan( 153 125 + π 4 ) )cos( 153 125 )+ 431 125 1.36604180418083

Conclusion:

Area of Region R 1.366

(b)

To determine

To find the volume of the solid generated when region R is revolved about xaxis

(b)

Expert Solution
Check Mark

Answer to Problem 53RE

Volume of the solid generated when region R is revolved about xaxis

  16.4042

Explanation of Solution

Given:

Region R in the first quadrant enclosed by the y-axis and the graphs of y=2+sinx and y=secx

Concept Used:

The volume V of a solid generated by revolving the region about xaxis is

  V=πab([f(x)]2[g(x)]2) dx

Calculation:

   V=π 0 153 125 ( [ 2+sin( x ) ] 2 [ sec( x ) ] 2 )  dx

   Firstly solving indefinete integral  ( [ 2+sin( x ) ] 2 [ sec( x ) ] 2 ) dx

   ( [ 2+sin( x ) ] 2 [ sec( x ) ] 2 ) dx= ( sin( x )+2 ) 2 dx sec 2 ( x ) dx= ( ( sin( x ) ) 2 +4sin( x )+4 ) dx sec 2 ( x )dx

   = sin 2 ( x )dx +4 sin( x )dx+4 dx sec 2 ( x )dx

   = ( 1cos( 2x ) 2 )dx4cosx+4xtanx +C

   = ( 1 2 cos( 2x ) 2 ) dx4cosx+4xtanx+C

   = x 2 sin( 2x ) 4 4cosx+4xtanx+C

   = 9x 2 sin( 2x ) 4 4cosxtanx+C

   Therefore,

     ( [ 2+sin( x ) ] 2 [ sec( x ) ] 2 ) dx= 9x 2 sin( 2x ) 4 4cosxtanx+C

Now finding definite integral,

  0153125([2+sin(x)]2[sec(x)]2)dx =(9x2sin(2x)44cos(x)tan(x))|(x=153125)(9x2sin(2x)44cosxtanx)|(x=0)=(1377250sin(306125)44cos(153125)tan(153125))(0040)=sin(306125)44cos(153125)tan(153125)+1377250+4=sin(306125)44cos(153125)tan(153125)+23772505.22163

Conclusion:

Required Volume, V= π0153125([2+sin(x)]2[sec(x)]2) dx

  Vπ×5.2216316.4042

c.

To determine

To find volume of the solid whose base is region R and whose cross sections cut by planes perpendicular to xaxis .

c.

Expert Solution
Check Mark

Answer to Problem 53RE

Volume of the solid whose base is region R and whose cross sections cut by planes perpendicular to xaxis

  1.6290

Explanation of Solution

Given:

The solid whose base is region R and whose cross sections cut by planes perpendicular to xaxis .

Concept Used:

Volume of the solid whose base is region R and whose cross sections cut by planes perpendicular to xaxis = ab(f(x)g(x))2dx

Calculation:

   Volume( V )= 0 153 125 ( ( 2+sin( x ) )sec( x ) ) 2 dx

   finding indefinete integral  ( ( 2+sin( x ) )sec( x ) ) 2 dx

   ( ( 2+sin( x ) )secx ) 2 dx

   = ( ( 2+sin( x ) ) 2 ++ ( sec( x ) ) 2 2( 2+sin( x ) )( sec( x ) ) ) dx

   = ( ( 4+ sin 2 ( x )+4sin( x ) )+ sec 2 ( x )4sec( x )2sin( x )sec( x ) ) dx

   =4 dx+ sin 2 ( x )dx +4 sin( x )dx+ sec 2 ( x )dx4 sec( x )dx 2 tan( x )dx             ( sinxsecx=tanx )

   =4x+ x 2 + sin2x 4 4cosx+tanx4ln( | tan( x 2 + π 4 ) | )2ln( | cos( x ) | )

   = 9x 2 + sin2x 4 4cosx+tanx4ln( | tan( x 2 + π 4 ) | )2ln( | cos( x ) | )

Now finding definite integral by putting values of limits

   0 153 125 ( ( 2+sin( x ) )sec( x ) ) 2 dx

   =( 9x 2 + sin2x 4 4cosx+tanx4ln( | tan( x 2 + π 4 ) | )2ln( | cos( x ) | ) ) | (x= 153 125 ) ( 9x 2 + sin2x 4 4cosx+tanx4ln( | tan( x 2 + π 4 ) | )2ln( | cos( x ) | ) ) | (x=0)

   =( 1377 250 + sin( 306 125 ) 4 4cos( 153 125 )+tan( 153 125 )4ln( | tan( 153 250 + π 4 ) | )2ln( | cos( 153 125 ) | ) )( 0+04+00 )

   = 1377 250 +4+ sin( 306 125 ) 4 4cos( 153 125 )+tan( 153 125 )4ln( | tan( 153 250 + π 4 ) | )2ln( | cos( 153 125 ) | )

   = 2377 250 + sin( 306 125 ) 4 4cos( 153 125 )+tan( 153 125 )4ln( | tan( 153 250 + π 4 ) | )2ln( | cos( 153 125 ) | )1.6290

Conclusion:

Required Volume 1.6290

Chapter 8 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 8.1 - Prob. 1ECh. 8.1 - Prob. 2ECh. 8.1 - Prob. 3ECh. 8.1 - Prob. 4ECh. 8.1 - Prob. 5ECh. 8.1 - Prob. 6ECh. 8.1 - Prob. 7ECh. 8.1 - Prob. 8ECh. 8.1 - Prob. 9ECh. 8.1 - Prob. 10ECh. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - Prob. 36ECh. 8.1 - Prob. 37ECh. 8.1 - Prob. 38ECh. 8.1 - Prob. 39ECh. 8.1 - Prob. 40ECh. 8.1 - Prob. 41ECh. 8.2 - Prob. 1QRCh. 8.2 - Prob. 2QRCh. 8.2 - Prob. 3QRCh. 8.2 - Prob. 4QRCh. 8.2 - Prob. 5QRCh. 8.2 - Prob. 6QRCh. 8.2 - Prob. 7QRCh. 8.2 - Prob. 8QRCh. 8.2 - Prob. 9QRCh. 8.2 - Prob. 10QRCh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - Prob. 27ECh. 8.2 - Prob. 28ECh. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Prob. 31ECh. 8.2 - Prob. 32ECh. 8.2 - Prob. 33ECh. 8.2 - Prob. 34ECh. 8.2 - Prob. 35ECh. 8.2 - Prob. 36ECh. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Prob. 39ECh. 8.2 - Prob. 40ECh. 8.2 - Prob. 41ECh. 8.2 - Prob. 42ECh. 8.2 - Prob. 43ECh. 8.2 - Prob. 44ECh. 8.2 - Prob. 45ECh. 8.2 - Prob. 46ECh. 8.2 - Prob. 47ECh. 8.2 - Prob. 48ECh. 8.2 - Prob. 49ECh. 8.2 - Prob. 50ECh. 8.2 - Prob. 51ECh. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.2 - Prob. 54ECh. 8.2 - Prob. 55ECh. 8.2 - Prob. 56ECh. 8.2 - Prob. 57ECh. 8.2 - Prob. 58ECh. 8.3 - Prob. 1QRCh. 8.3 - Prob. 2QRCh. 8.3 - Prob. 3QRCh. 8.3 - Prob. 4QRCh. 8.3 - Prob. 5QRCh. 8.3 - Prob. 6QRCh. 8.3 - Prob. 7QRCh. 8.3 - Prob. 8QRCh. 8.3 - Prob. 9QRCh. 8.3 - Prob. 10QRCh. 8.3 - Prob. 1ECh. 8.3 - Prob. 2ECh. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - Prob. 17ECh. 8.3 - Prob. 18ECh. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - Prob. 28ECh. 8.3 - Prob. 29ECh. 8.3 - Prob. 30ECh. 8.3 - Prob. 31ECh. 8.3 - Prob. 32ECh. 8.3 - Prob. 33ECh. 8.3 - Prob. 34ECh. 8.3 - Prob. 35ECh. 8.3 - Prob. 36ECh. 8.3 - Prob. 37ECh. 8.3 - Prob. 38ECh. 8.3 - Prob. 39ECh. 8.3 - Prob. 40ECh. 8.3 - Prob. 41ECh. 8.3 - Prob. 42ECh. 8.3 - Prob. 43ECh. 8.3 - Prob. 44ECh. 8.3 - Prob. 45ECh. 8.3 - Prob. 46ECh. 8.3 - Prob. 47ECh. 8.3 - Prob. 48ECh. 8.3 - Prob. 49ECh. 8.3 - Prob. 50ECh. 8.3 - Prob. 51ECh. 8.3 - Prob. 52ECh. 8.3 - Prob. 53ECh. 8.3 - Prob. 54ECh. 8.3 - Prob. 55ECh. 8.3 - Prob. 56ECh. 8.3 - Prob. 57ECh. 8.3 - Prob. 58ECh. 8.3 - Prob. 59ECh. 8.3 - Prob. 60ECh. 8.3 - Prob. 61ECh. 8.3 - Prob. 62ECh. 8.3 - Prob. 63ECh. 8.3 - Prob. 64ECh. 8.3 - Prob. 65ECh. 8.3 - Prob. 66ECh. 8.3 - Prob. 67ECh. 8.3 - Prob. 68ECh. 8.3 - Prob. 69ECh. 8.3 - Prob. 70ECh. 8.3 - Prob. 71ECh. 8.3 - Prob. 72ECh. 8.3 - Prob. 73ECh. 8.3 - Prob. 74ECh. 8.3 - Prob. 1QQCh. 8.3 - Prob. 2QQCh. 8.3 - Prob. 3QQCh. 8.3 - Prob. 4QQCh. 8.4 - Prob. 1QRCh. 8.4 - Prob. 2QRCh. 8.4 - Prob. 3QRCh. 8.4 - Prob. 4QRCh. 8.4 - Prob. 5QRCh. 8.4 - Prob. 6QRCh. 8.4 - Prob. 7QRCh. 8.4 - Prob. 8QRCh. 8.4 - Prob. 9QRCh. 8.4 - Prob. 10QRCh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Prob. 25ECh. 8.4 - Prob. 26ECh. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prob. 30ECh. 8.4 - Prob. 31ECh. 8.4 - Prob. 32ECh. 8.4 - Prob. 33ECh. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.4 - Prob. 36ECh. 8.4 - Prob. 37ECh. 8.4 - Prob. 38ECh. 8.4 - Prob. 39ECh. 8.4 - Prob. 40ECh. 8.5 - Prob. 1QRCh. 8.5 - Prob. 2QRCh. 8.5 - Prob. 3QRCh. 8.5 - Prob. 4QRCh. 8.5 - Prob. 5QRCh. 8.5 - Prob. 6QRCh. 8.5 - Prob. 7QRCh. 8.5 - Prob. 8QRCh. 8.5 - Prob. 9QRCh. 8.5 - Prob. 10QRCh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Prob. 6ECh. 8.5 - Prob. 7ECh. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Prob. 13ECh. 8.5 - Prob. 14ECh. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Prob. 25ECh. 8.5 - Prob. 26ECh. 8.5 - Prob. 27ECh. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.5 - Prob. 31ECh. 8.5 - Prob. 32ECh. 8.5 - Prob. 33ECh. 8.5 - Prob. 34ECh. 8.5 - Prob. 35ECh. 8.5 - Prob. 36ECh. 8.5 - Prob. 37ECh. 8.5 - Prob. 38ECh. 8.5 - Prob. 39ECh. 8.5 - Prob. 40ECh. 8.5 - Prob. 41ECh. 8.5 - Prob. 42ECh. 8.5 - Prob. 43ECh. 8.5 - Prob. 44ECh. 8.5 - Prob. 45ECh. 8.5 - Prob. 46ECh. 8.5 - Prob. 47ECh. 8.5 - Prob. 48ECh. 8.5 - Prob. 49ECh. 8.5 - Prob. 1QQCh. 8.5 - Prob. 2QQCh. 8.5 - Prob. 3QQCh. 8.5 - Prob. 4QQCh. 8 - Prob. 1RECh. 8 - Prob. 2RECh. 8 - Prob. 3RECh. 8 - Prob. 4RECh. 8 - Prob. 5RECh. 8 - Prob. 6RECh. 8 - Prob. 7RECh. 8 - Prob. 8RECh. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - Prob. 11RECh. 8 - Prob. 12RECh. 8 - Prob. 13RECh. 8 - Prob. 14RECh. 8 - Prob. 15RECh. 8 - Prob. 16RECh. 8 - Prob. 17RECh. 8 - Prob. 18RECh. 8 - Prob. 19RECh. 8 - Prob. 20RECh. 8 - Prob. 21RECh. 8 - Prob. 22RECh. 8 - Prob. 23RECh. 8 - Prob. 24RECh. 8 - Prob. 25RECh. 8 - Prob. 26RECh. 8 - Prob. 27RECh. 8 - Prob. 28RECh. 8 - Prob. 29RECh. 8 - Prob. 30RECh. 8 - Prob. 31RECh. 8 - Prob. 32RECh. 8 - Prob. 33RECh. 8 - Prob. 34RECh. 8 - Prob. 35RECh. 8 - Prob. 36RECh. 8 - Prob. 37RECh. 8 - Prob. 38RECh. 8 - Prob. 39RECh. 8 - Prob. 40RECh. 8 - Prob. 41RECh. 8 - Prob. 42RECh. 8 - Prob. 43RECh. 8 - Prob. 44RECh. 8 - Prob. 45RECh. 8 - Prob. 46RECh. 8 - Prob. 47RECh. 8 - Prob. 48RECh. 8 - Prob. 49RECh. 8 - Prob. 50RECh. 8 - Prob. 51RECh. 8 - Prob. 52RECh. 8 - Prob. 53RECh. 8 - Prob. 54RECh. 8 - Prob. 55RE

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY