Determining the velocity of particles settling through fluids is of great importance of many areas of engineering and science. Such calculations depend on the flow regime as represented by the dimensionless Reynolds number,
where
where
where
(a) Combine Eqs. (P8.48.2), (P8.48.3), and (P8.48.4) to express the determination of v as a roots of equations problem. That is, express the combined formula in the format
(b) Use the modified secant method with
(c) Based on the result of (b), compute the Reynolds number and the drag coefficient, and use the latter to confirm that the flow regime is not laminar.
(d) Develop a fixed-point iteration solution for the conditions outlined in (b).
(e) Use a graphical approach to illustrate that the formulation developed in (d) will converge for any positive guess.
(a)
To calculate: The equation for the velocity of the particles that settle inside fluids in the form
Answer to Problem 48P
Solution: The desired equation for the velocity of the settling particles is
Explanation of Solution
Given Information:
The relation between the fluid’s velocity in
Here, d is the diameter of the object in m,
Formula Used:
When the Reynolds number is less than 0.1, the Stokes law states that:
Here, g is the gravitational constant and
When the Reynolds number is higher,
Here
Calculation:
Consider the formula for the Reynolds’ number:
Substitute the value of the Reynolds number in the formula for the drag coefficient.
Now replace the value of the drag coefficient from equation
Now create a function whose zero is same as the root of this equation:
This is the desired equation.
(b)
To calculate: The zero of the function obtained in part (a) using the modified secant method where
Answer to Problem 48P
Solution: The velocity of the iron particle settling in water is
Explanation of Solution
Given Information:
The diameter of the iron particle is
Formula Used:
The iterative scheme for the modified secant method is of the form:
where
Calculation:
Note that the dimensions of the diameter, particle density, water density, and the viscosity of water are different to what can be used in the equation obtained in part (a).
Convert the dimensions as follows:
And,
And,
And,
The modified secant method requires an initial guess. This can be obtained using Stoke’s law.
Now the modified secant method can be started. This will be done using MATLAB.
Code:
The mod_secant.m file
function
while(
if
end
end
end
The func.m file
function
end
Output:
Note that in the third iteration the absolute relative percentage error falls below 0.05%.
Hence the desired velocity can be approximated as
(c)
To calculate: The Reynolds number and the drag coefficient for the iron particles that settle in water and then determine whether the flow in laminar or not.
Answer to Problem 48P
Solution: The Reynolds number is 9.95821429 and the drag coefficient is 3.70074225. This implies that the flow is not laminar.
Explanation of Solution
Given Information:
The velocity of the iron particle settling in water is
Formula Used:
The relation between the fluid’s velocity in
Here, d is the diameter of the object in m,
Calculation:
Substitute 0.0697075 for the v, 0.0002 for d, 1000 for
Hence, the Reynolds number is 9.95821429. As this is greater than 0.1, the flow is non-laminar.
Now substitute 9.95821429 for Re in the formula for the drag-coefficient to obtain:
Thus, the drag coefficient is 3.70074225.
(d)
To calculate: The zero of the function obtained in part (a) using the fixed point method where
Answer to Problem 48P
Solution: The velocity of the iron particle settling in water is
Explanation of Solution
Given Information:
The diameter of the iron particle is
Formula Used:
The iterative scheme for the fixed point method is of the form:
Calculation:
Note that the dimensions of the diameter, particle density, water density, and the viscosity of water are different to what can be used in the equation obtained in part (a).
Convert the dimensions as follows:
And,
And,
And,
The fixed point method requires an initial guess. This can be obtained using Stoke’s law.
Consider the equation whose root needs to obtain as velocity:
Now proceed with the fixed-point method using MATLAB.
Code:
The fixed_point.m file
function
while(
if
end
end
end
The g.m file
function
end
Output:
This shows that after the 9th iteration, the approximate relative percentage error reaches below 0.05%.
Hence the desired velocity can be approximated as
(e)
To prove: The function whose root was computed in part (d) would converge using the fixed point iteration irrespective of a positive initial guess.
Explanation of Solution
Given Information:
The diameter of the iron particle is
Formula Used:
The function in terms of the velocity whose zero or root was computed in part (d) was
Proof:
The fixed point iteration for a function
This is iteratively rewritten as:
Use equation
Now graph the functions on the right and on the left of the provided equation.
This can be done using MATLAB.
Code:
Graph:
Interpretation:
Note that the graph is divided into two parts. The first part where the function
For both the parts, it is clear that any positive guess say
A line drawn horizontal from
Now proceeding the same way as before, the iterative method would approach the true root. Note that this would occur irrespective of the positive value of
This can be illustrated as:
Hence, the fixed point method would converge irrespective of the positive initial guess
Want to see more full solutions like this?
Chapter 8 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
Elementary Statistics: A Step By Step Approach
Pathways To Math Literacy (looseleaf)
A First Course in Probability (10th Edition)
Precalculus
Elementary Statistics
Intro Stats, Books a la Carte Edition (5th Edition)
- The kinetic energy E of an object varies jointly with the object’s mass m and the square of the object’s velocity v . An object with a mass of 50 kilograms traveling at 16 meters per second has a kinetic energy of 6400 joules. What is the kinetic energy of an object with a mass of 70 kilograms traveling at 20 meters per second?arrow_forwardRun data analysis using SPSS/Minitab - Please show the step by step of the solution using SPSS/Minitabarrow_forwardIn a Couette flow, two large flat plates lie one on top of another, separated by a thin layer of fluid. If a shear stress is applied to the top plate, the viscosity of the fluid produces motion in the bottom plate as well. The velocity V in the top plate relative to the bottom plate is given by V = τh/μ, where τ is the shear stress applied to the top plate, h is the thickness ofthe fluid layer, and μ is the viscosity of the fluid. Assume that μ = 1.49 Pa · s and h = 10 mm, both with negligible uncertainty.a) Suppose that τ = 30.0 ± 0.1 Pa. Estimate V, and find the uncertainty in the estimate.b) If it is desired to estimate V with an uncertainty of 0.2 mm/s, what must be the uncertainty in τ?arrow_forward
- Answer question 5 in the attached image pleasearrow_forwardThe density of air changes with height. Under some conditions density p, depends on height z, and temperature T according to the following equation where Po and A are both constants. A meteorological balloon ascends (i.e., starts at z = 1 and gains height) over the course of several hours. Complete parts (a) and (b) below. Az P(z,T) = Po e ..... dz v) and that the temperature changes over time (i.e., that T is given by a function T(t)), derive, using the chain rule, an expression for the rate of change of air density, (a) Assuming that the balloon ascends at a speed v (i.e., dt as measured by the weather balloon. Choose the correct answer below. dp Az dT O A. dt T2 dt dp %3D dt Az dT dp С. dt %3D + T dt dp Az) dT O D. dt T2) dt (b) Assume that v = 1, Po = 1, and A = 1 and that when t= 0, T= 1. Are there any conditions under which the density, as measured by the balloon will not change in time? That is, find a differential equation that T must satisfy, if dp = 0, and solve this…arrow_forwardFourier's Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -KVT, which means that heat energy flows from hot regions to cold regions. The constant k is called the conductivity, which has metric units SS S of J/m-s-K or W/m-K. A temperature function T for a region D is given below. Find the net outward heat flux boundary S of D. It may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1. T(x,y,z) = 100 - 5x+ 5y +z; D = {(x,y,z): 0≤x≤5, 0≤y≤4, 0≤z≤ 1} The net outward heat flux across the boundary is (Type an exact answer, using as needed.) -KSS S F.ndS = -k VT n dS across thearrow_forward
- An electron moves with a constant horizontal velocity of 3.0 x 100 m/s and no initial vertical velocity as it enters a deflector inside a TV tube. The electron strikes the screen after traveling 17.0 cm horizontally and 40.0 cm vertically upward with no horizontal acceleration. What is the constant vertical acceleration provided by the deflector? (The effects of gravity can be ignored.) 1.4 x 10 m/s? 14 2.5 x 10 m/s2 14 1.2 x 10 m/s? 8.3 x 10 m/s?arrow_forwardA skydiver weighing 120kg drops vertically from a jet flying at 4.000m. Assume the force due to air resistance to be proportional to the velocity of the skydiver, with the proportionality constant b1= 20 N⋅sec/m before the cute is opened, and b2= 100 N⋅sec/m after the chute is opened. If the skydiver opens the chute after 60 seconds of free fall, find: a. The total amount of time elapsed between dropping out of the plane and landing. b. The velocity of the skydiver at the instant of landing on the ground.arrow_forwardOhm's law states that the voltage drop Vacross an ideal resistor is linearly proportional to the current i flowing through the resistor as V= iR. Where R is the resistance. However, real resistors may not always obey Ohm's law. Suppose that you perform some very precise experiments to measure the voltage drop and the corresponding current for a resistor. The following results suggest a curvilinear relationship rather than the straight line represented by Ohm's law. i -1 - 0.5 - 0.25 0.25 0.5 1 V -637 -96.5 -20.25 20.5 96.5 637 Instead of the typical linear regression method for analyzing such experimental data, fit a curve to the data to quantify the relationship. Compute V for i = 0.1 using Polynomial Interpolation.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning