Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 47P

The space shuttle, at lift-off from the launch pad, has four forces acting on it, which are shown on the free-body diagram (Fig. P8.47). The combined weight of the two solid rocket boosters and external fuel tank is W B = 1.663 × 10 6  lb . The weight of the orbiter with a full payload is W S = 0.23 × 10 6  lb . The combined thrust of the two solid rocket boosters is T B = 5.30 × 10 6  lb . The combined thrust of the three liquid fuel orbiter engines is T S = 1.125 × 10 6  lb .

At liftoff, the orbiter engine thrust is directed at angle θ to make the resultant moment acting on the entire craft assembly (external tank, solid rocket boosters, and orbiter) equal to zero. With the resultant moment equal to zero, the craft will not rotate about its mass center G at liftoff. With these forces, the craft will have a resultant force with components in both the vertical and horizontal direction. The vertical resultant force component is what allows the craft to lift off from the launch pad and fly vertically. The horizontal resultant force component causes the craft to fly horizontally. The resultant moment acting on the craft will be zero when θ is adjusted to the proper value. If this angle is not adjusted properly, and there is some resultant moment acting on the craft, the craft will tend to rotate about it mass center.

(a) Resolve the orbiter thrust T S into horizontal and vertical components, and then sum moments about point G, the craft mass center. Set the resulting moment equation equal to zero. This equation can now be solved for the value of θ required for liftoff.

(b) Derive an equation for the resultant moment acting on the craft in terms of the angle θ . Plot the resultant moment as a function of the angle θ over a range of –5 radians to +5 radians.

(c) Write a computer program to solve for the angle θ using Newton's method to find the root of the resultant moment equation. Make an initial first guess at the root of interest using the plot. Terminate your iterations when the value of θ has better than five significant figures.

(d) Repeat the program for the minimum payload weight of the orbiter of W S = 195 , 000  lb .

Chapter 8, Problem 47P, The space shuttle, at lift-off from the launch pad, has four forces acting on it, which are shown on

FIGURE P8.47

Blurred answer
Students have asked these similar questions
2. In a computer network some pairs of computers are connected by network cables. Your goal is to set up the computers so that messages can be sent quickly from any computer to any other computer. For this you have identified each of the n com- puters uniquely with a number between 1 and n, and have decided that a message should consist of two such numbers, identifying the sender and the recipient, fol- lowed by the content of the message. As cables are relatively short, you can assume that sending a message across a single cable takes an amount of time that is the same irrespective of the length of the cable. You can further assume that at most one message travels between computer at any point, so that you don't have to worry about inference among messages. (a) Define a graph or network that models the computer network and allows you to answer the remaining parts of this question. (b) Consider two computers, a sender and a recipient. Using the graph or network you have defined,…
3. A spreadsheet consists of cells indexed by a row and a column. Each cell contains either a value or a formula that depends on the values of other cells. (a) Describe a graph, digraph, or network that models an arbitrary spreadsheet and allows you to answer the remaining parts of this question. (b) Explain, by referring to the graph, digraph, or network, when it is possible to change the value of cell x without changing the value of cell y. (c) Explain, by referring to the graph, digraph, or network, when it is possible to calculate the values of all cells in the spreadsheet. Consider the following spreadsheet with 5 rows, 7 columns, and 35 cells. For exam- ple, cell el contains a value, whereas cell al contains a formula that depends on the values cells el and 95. a b с 1 el+g5 al-c5 110 d al+cl 180 e f g f5-el c1+c2 2 al+b1 a2+c4 240 a2+c2 120 f5-e2 e3+e5 3 a2+b2 a3-c3 100 a3+c1 200 f5-e3 f1+f2 4 a3+b3 a4+c2 220 a4+c2 100 f5-e4 f3+f4 5 a4+b4 a5-c1 130 a5+c5 120 g3+g4 g1+g2 (d) Can…
1. Let W, U, and S be graphs defined as follows: • V(W) is the set of countries in the world; • V(U) is the set of countries in the European Union; V(S) is the set of countries in the Schengen Area; ● for X = {W,U,S}, E(X) is the set of pairs of countries in V(X) that share a land border. Recall that land borders between countries in the Schengen Area are special in that they can be crossed without a passport. (a) The notions of a country and a land border are somewhat ambiguous. Explain the notions you will use to get a precise definition of the graphs W, U, and S. (b) Is S a subgraph of U? Is U an induced subgraph of W? Justify your answers. (c) Using non-mathematical language, explain what it means for a country x if VEV(S) and dw (v) = 0. Give all such countries. Let A = {v Є V(W) \V(S) such that |Nw(v)| > 0 and Nw (v) ≤ V(S)}. (d) Using non-mathematical language, explain what the set A represents in terms of countries and land borders. Give a specific element of A or explain why A…

Chapter 8 Solutions

Numerical Methods for Engineers

Ch. 8 - 8.11 The operation of a constant density plug flow...Ch. 8 - 8.12 The Ergun equation, shown below, is used to...Ch. 8 - The pressure drop in a section of pipe can be...Ch. 8 - 8.14 In structural engineering, the secant formula...Ch. 8 - 8.15 In environmental engineering (a specialty...Ch. 8 - 8.16 The concentration of pollutant bacteria c in...Ch. 8 - A catenary cable is one that is hung between two...Ch. 8 - 8.18 Figure P8.18a shows a uniform beam subject to...Ch. 8 - 8.19 The displacement of a structure is defined by...Ch. 8 - 8.20 The Manning equation can be written for a...Ch. 8 - In ocean engineering, the equation for a reflected...Ch. 8 - 8.22 You buy a $20,000 piece of equipment for...Ch. 8 - Many fields of engineering require accurate...Ch. 8 - 8.24 A simply supported beam is loaded as shown in...Ch. 8 - 8.25 Using the simply supported beam from Prob....Ch. 8 - Using the simply supported beam from Prob. 8.24,...Ch. 8 - Using the simply supported beam from Prob. 8.24,...Ch. 8 - 8.28 Although we did not mention it in Sec. 8.2,...Ch. 8 - 8.29 Perform the same computation as in Sec. 8.3,...Ch. 8 - An oscillating current in an electric circuit is...Ch. 8 - Prob. 31PCh. 8 - 8.32 A total charge Q is uniformly distributed...Ch. 8 - 8.33 Figure P8.33 shows a circuit with a resistor,...Ch. 8 - Beyond the Colebrook equation, other...Ch. 8 - Real mechanical systems may involve the deflection...Ch. 8 - Mechanical engineers, as well as most other...Ch. 8 - Aerospace engineers sometimes compute the...Ch. 8 - The general form for a three-dimensional stress...Ch. 8 - The upward velocity of a rocket can be computed by...Ch. 8 - The phase angle between the forced vibration...Ch. 8 - Two fluids at different temperatures enter a mixer...Ch. 8 - A compressor is operating at compression ratio Rc...Ch. 8 - In the thermos shown in Fig. P8.43, the innermost...Ch. 8 - 8.44 Figure P8.44 shows three reservoirs connected...Ch. 8 - A fluid is pumped into the network of pipes...Ch. 8 - 8.46 Repeat Prob. 8.45, but incorporate the fact...Ch. 8 - The space shuttle, at lift-off from the launch...Ch. 8 - 8.48 Determining the velocity of particles...
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
How to find the magnitude and direction of a given vector; Author: Brian McLogan;https://www.youtube.com/watch?v=4qE-ZrR_NxI;License: Standard YouTube License, CC-BY
Linear Algebra for Computer Scientists. 2. Magnitude of a Vector; Author: Computer Science;https://www.youtube.com/watch?v=ElnuSJyUdR4;License: Standard YouTube License, CC-BY