Concept explainers
(a)
Interpretation: Check whether the given molecule is polar or not. If the molecule is polar then the direction of polarity has to be indicated.
Concept Introduction:
Polar molecules are the molecules having a positive and negative end and so there will be a charge separation.
A polar molecule is a molecule where the polar bonds are asymmetrically arranged (the dipoles do not cancel)
A nonpolar molecule is a molecule with no polar bonds or a molecule where the polar bonds are symmetrically arranged.
In polar molecule the charge separation occurred with respect to the difference in electronegativity of atoms in the molecule.
Direction of dipole moment in a molecule is can be represented as follows,
Different types of molecules and their geometry in accordance with the VSEPR theory are mentioned below,
(a)
Explanation of Solution
The structure of
This molecule has a trigonal planar geometry. The direction dipole in the molecule is represented below,
However
(b)
Interpretation: Check whether the given molecule is polar or not. If the molecule is polar then the direction of polarity has to be indicated.
Concept Introduction:
Polar molecules are the molecules having a positive and negative end and so there will be a charge separation.
A polar molecule is a molecule where the polar bonds are asymmetrically arranged (the dipoles do not cancel)
A nonpolar molecule is a molecule with no polar bonds or a molecule where the polar bonds are symmetrically arranged.
In polar molecule the charge separation occurred with respect to the difference in electronegativity of atoms in the molecule.
Direction of dipole moment in a molecule is can be represented as follows,
Different types of molecules and their geometry in accordance with the VSEPR theory are mentioned below,
(b)
Explanation of Solution
The structure of
This molecule has a trigonal planar geometry. The direction dipole in the molecule is represented below,
However
(c)
Interpretation: Check whether the given molecule is polar or not. If the molecule is polar then the direction of polarity has to be indicated.
Concept Introduction:
Polar molecules are the molecules having a positive and negative end (dipole) and so there will be a charge separation.
A polar molecule is a molecule where the polar bonds are asymmetrically arranged (the dipoles do not cancel)
A nonpolar molecule is a molecule with no polar bonds or a molecule where the polar bonds are symmetrically arranged.
In polar molecule the charge separation occurred with respect to the difference in electronegativity of atoms in the molecule.
Direction of dipole in a molecule is can be represented as follows,
Different types of molecules and their geometry in accordance with the VSEPR theory are mentioned below,
(c)
Explanation of Solution
The structure of
This molecule has a tetrahedral geometry. The direction dipole in the molecule is represented below,
However
(d)
Interpretation: Check whether the given molecule is polar or not. If the molecule is polar then the direction of polarity has to be indicated.
Concept Introduction:
Polar molecules are the molecules having a positive and negative end and so there will be a charge separation.
A polar molecule is a molecule where the polar bonds are asymmetrically arranged (the dipoles do not cancel)
A nonpolar molecule is a molecule with no polar bonds or a molecule where the polar bonds are symmetrically arranged.
In polar molecule the charge separation occurred with respect to the difference in electronegativity of atoms in the molecule.
Direction of dipole moment in a molecule is can be represented as follows,
Different types of molecules and their geometry in accordance with the VSEPR theory are mentioned below,
(d)
Explanation of Solution
The structure of
This molecule has a tetrahedral geometry. The direction dipole in the molecule is represented below,
However
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry & Chemical Reactivity
- The organic compound MTBE (methyltertiarybutylether) is used as a fuel additive that allows gasoline to burn more cleanly thus leading to a reduction in pollution. Recently, however, MTBE has been found in the drinking water of a number of communities. As a result several states are phasing out the use of MTBE as a fuel additive. A combustion experiment using 10.00 g of MTBE was found to produce 24.97g of CO2 and 12.26 g of H2O. (a) What is the empirical formula of MTBE assuming it contains C, H, and O only? (b) The molar mass of MTBE was experimentally determined to be 88.1 g/mol. Using this information what is the molecular formula of MTBEarrow_forwardPart 4: Provide a detailed retrosynthetic analysis and a plausible forward synthesis the following molecule. храдо ofarrow_forward3A: Starting with benzocyclobutene, synthesize the naphthalene derivative below.arrow_forward
- 7. The addition of HBr to 2,5-dimethyl-2,4-heptadiene gives the same product, A, at both low and high temperatures. Provide the structure of A and explain the kinetic and thermodynamic product are the same in this reaction. HBr -78°C or 60°C Aarrow_forward3B: Convert the starting material into the chiral epoxytriol below. OH OH = OH OHarrow_forward3D: Convert the aromatic triketone to the 1,3,5-triethylcyclohexane shown below. ہوئےarrow_forward
- Indicate how to find the energy difference between two levels in cm-1, knowing that its value is 2.5x10-25 joules.arrow_forwardThe gyromagnetic ratio (gamma) for 1H is 2.675x108 s-1 T-1. If the applied field is 1,409 T what will be the separation between nuclear energy levels?arrow_forwardChances Ad ~stract one 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $4th total Statistical pro 21 total 2 H A 2H 래 • 4H totul < 3°C-H werkest bund - abstraction he leads to then mo fac a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? рос 6 -વા J Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Clarrow_forward
- What is the lone pair or charge that surrounds the nitrogen here to give it that negative charge?arrow_forwardLast Name, Firs Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $ 4th total 21 total 4H total ZH 2H Statistical H < 3°C-H werkst - product bund abstraction here leads to the mo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Proclict 6 Number of Unique Mono-Chlorinated Products f Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary 'H H-Cl Waterfoxarrow_forward2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning