College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 29P
A 1.2 kg block is hung from a vertical spring, causing the spring to stretch by 2.4 cm. How much farther will the spring stretch if a 0.60 kg block is added to the 1.2 kg block?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spring stretches 5.0 cm when a 0.20 kg block is hung from it. If a 0.70 kg block replaces the 0.20 kg block, how far does the spring stretch?
we analyzed a cable used to support an actor as he swings onto the stage. Now suppose the tension in the cable is 940 N as the actor reaches the lowest point. What diameter should a 10-m-long steel cable have if we do not want it to stretch more than 0.50 cm under these conditions?
Two 20 kg blocks are connected by a 2.0-m-long, 5.0-mm-diameter rope. Young's modulus for this rope is 1.5 x 109 N/m2. The rope is then hung over a pulley, so that the blocks, hanging from each side of the pulley, are in static equilibrium. By how much does the rope stretch?
Chapter 8 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 8 - An object is acted upon by two (and only two)...Ch. 8 - Prob. 2CQCh. 8 - Could a ladder on a level floor lean against a...Ch. 8 - If you are using a rope to raise a tall mast,...Ch. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - Prob. 7CQCh. 8 - A spring exerts a 10 N force after being stretched...Ch. 8 - The left end of a spring is attached to a wall....Ch. 8 - A spring is attached to the floor and pulled...
Ch. 8 - A typical mattress has a network of springs that...Ch. 8 - Take a spring and cut it in half to make two...Ch. 8 - A wire is stretched right to its breaking point by...Ch. 8 - Steel nails are rigid and unbending. Steel wool is...Ch. 8 - The rod in Figure Q8.15 pivots around an axle at...Ch. 8 - Two children hold opposite ends of a lightweight,...Ch. 8 - Prob. 17MCQCh. 8 - Prob. 18MCQCh. 8 - Prob. 19MCQCh. 8 - Prob. 20MCQCh. 8 - Prob. 21MCQCh. 8 - Prob. 22MCQCh. 8 - You have a heavy piece of equipment hanging from a...Ch. 8 - Prob. 24MCQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Youre carrying a 3.6-m-long, 25 kg pole to a...Ch. 8 - Prob. 6PCh. 8 - How much torque must the pin exert to keep the rod...Ch. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Consider the procedure for measuring a womans...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - The stability of a vehicle is often rated by the...Ch. 8 - You want to slowly push a stiff board across a 20...Ch. 8 - Prob. 20PCh. 8 - A car manufacturer claims that you can drive its...Ch. 8 - Prob. 22PCh. 8 - One end of a spring is attached to a wall. A 25 N...Ch. 8 - An orthodontic spring, connected between the upper...Ch. 8 - Experiments using optical tweezers measure the...Ch. 8 - A spring has an unstretched length of 10 cm. It...Ch. 8 - One end of a 10-cm-long spring is attached to the...Ch. 8 - A spring stretches 5.0 cm when a 0.20 kg block is...Ch. 8 - A 1.2 kg block is hung from a vertical spring,...Ch. 8 - You need to make a spring scale to measure the...Ch. 8 - A force stretches a wire by 1.0 mm. a. A second...Ch. 8 - What hanging mass will stretch a 2.0-m-long,...Ch. 8 - How much force does it take to stretch a...Ch. 8 - An 80-cm-long, 1.0-mm-diameter steel guitar string...Ch. 8 - A student is testing a 1.0 m length of...Ch. 8 - A 1.2-m-long steel rod with a diameter of 0.50 cm...Ch. 8 - A mineshaft has an ore elevator hung from a single...Ch. 8 - The normal force of the ground on the foot can...Ch. 8 - A three-legged wooden bar stool made out of solid...Ch. 8 - Prob. 40PCh. 8 - A glass optical fiber in a communications system...Ch. 8 - The Achilles tendon connects the muscles in your...Ch. 8 - Prob. 43GPCh. 8 - Prob. 44GPCh. 8 - Using the information in Figure 8.2, calculate the...Ch. 8 - A woman weighing 580 N does a pushup from her...Ch. 8 - Prob. 47GPCh. 8 - Prob. 48GPCh. 8 - Prob. 49GPCh. 8 - The wheel of mass m in Figure P8.50 is pulled on...Ch. 8 - A 5.0 kg mass hanging from a spring scale is...Ch. 8 - Two identical, side-by-side springs with spring...Ch. 8 - Two springs have the same equilibrium length but...Ch. 8 - Figure P8.54 shows two springs attached to a block...Ch. 8 - A 60 kg student is standing atop a spring in an...Ch. 8 - A 25 kg child bounces on a pogo stick. The pogo...Ch. 8 - Figure P8.57 shows a lightweight plank supported...Ch. 8 - In the hammer throw, an athlete spins a heavy mass...Ch. 8 - There is a disk of cartilage between each pair of...Ch. 8 - In Example 8.1, the tension in the biceps tendon...Ch. 8 - Larger animals have sturdier bones than smaller...Ch. 8 - Orb spiders make silk with a typical diameter of...Ch. 8 - Prob. 63MSPPCh. 8 - Prob. 64MSPPCh. 8 - Prob. 65MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Draw the mechanism for the hydroxide ion-catalyzed cleavage of fructose-l.6-bisphosphate.
Organic Chemistry (8th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An aluminium (=2.7g/cm3) wire is suspended from the ceiling and hangs vertically. How long must the wire be before the stress at its upper end reaches the proportionality limit, which is 8.0107N/m2 ?arrow_forwardA bridge of length 50.0 m and mass 8.00 104 kg is supported on a smooth pier at each end as shown in Figure P12.25. A truck of mass 3.00 104 kg is located 15.0 m from one end. What are the forces on the bridge at the points of support? Figure P12.25arrow_forwardA uniform wire (Y = 2.0 1011 N/m2) is subjected to a longitudinal tensile stress of 4.0 107 N/m2. What is the fractional change in the length of the wire?arrow_forward
- A uniform beam of length 7.60 m and weight 4.50 102 N is carried by two workers, Sam and Joe, as shown in Figure P12.6. Determine the force that each person exerts on the beam. Figure P12.6arrow_forwardA 10.0-kg monkey climbs a uniform ladder with weight 1.20 102 N and length L = 3.00 m as shown in Figure P12.14. The ladder rests against the wall and makes an angle of = 60.0 with the ground. The upper and lower ends of the ladder rest on frictionless surfaces. The lower end is connected to the wall by a horizontal rope that is frayed and can support a maximum tension of only 80.0 N. (a) Draw a force diagram for the ladder. (b) Find the normal force exerted on the bottom of the ladder. (c) Find the tension in the rope when the monkey is two-thirds of the way up the ladder. (d) Find the maximum distance d that the monkey can climb up the ladder before the rope breaks. (e) If the horizontal surface were rough and the rope were removed, how would your analysis of the problem change? What other information would you need to answer parts (c) and (d)? Figure P12.14arrow_forwardAssume Youngs modulus for bone is 1.50 1010 N/m2. The bone breaks if stress greater than 1.50 108 N/m2 is imposed on it. (a) What is the maximum force that can be exerted on the femur bone in the leg if it has a minimum effective diameter of 2.50 cm? (b) If this much force is applied compressively, by how much does the 25.0-cm-long bone shorten?arrow_forward
- Consider the sketch of a portion of a roller-coaster track seen in Figure P14.5. Identify places on the track that could be considered possible locations of static equilibrium for a rollercoaster car were the car to be placed at any spot on the track.Which places are candidate locations for stable, unstable, andneutral static equilibrium? FIGURE P14.5arrow_forwardA flexible chain weighing 40.0 N hangs between two hooks located at the same height (Fig. P12.9). At each hook, the tangent to the chain makes an angle = 42.0 with the horizontal. Find (a) the magnitude of the force each hook exerts on the chain and (b) the tension in the chain at its midpoint. Suggestion: For part (b), make a force diagram for half of the chain. Figure P12.9arrow_forwardA steel cable 2.00 m in length and with cross-sectional radius 0.350 mm is used to suspend from the ceiling a 10.0-kg model aircraft that is flying in a horizontal circle with an angular speed of 6.00 rad/s. What is the strain produced in the cable?arrow_forward
- A steel wire of diameter 4.72 mm stretches by 7.98 mm when a 320 -kg piece of equipment is suspended from it. If the wire had a diameter of 4.75 mm instead, by what distance in mm would the equipment stretch the wire?arrow_forwardA mineshaft has an ore elevator hung from a single braided cable of diameter 2.5 cm. Young’s modulus of the cable is 10 x 1010 N/m2. When the cable is fully extended, the end of the cable is 800 m below the support. How much does the fully extended cable stretch when 1000 kg of ore is loaded?arrow_forwardA spring of unstreched length 25 cm is pulled in a horizontal direction with 150 N force. Since we apply a force in a horizontal direction, the spring is stretched to 28 cm. Now we suspend the spring from a hook in a vertical direction and attached a 15 kg mass at the bottom. How long my spring will stretch?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY