College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 49GP
To determine
To find: The distance that the boy can get to the right end of the beam without it tipping.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The arm in Figure P8.17 weighs 41.5 N. The force of
gravity acting on the arm acts through point A. Determine the
magnitudes of the tension force F, in the deltoid muscle and
the force F, exerted by the shoulder on the humerus (upper-
arm bone) to hold the arm in the position shown.
F,
12°
F,
'0.080 m
-0.290 m
Figure P8.17
A 35 N forearm (we are ignoring the hand for this problem) are held at a 45 deg angle to the vertically oriented humerus. The COM of the forearm is located at a distance of 15 cm from the joint center at the elbow,
and the elbow flexor muscles have a 3 cm moment arm. How much force must be exerted by the elbow flexor muscles to maintain this position?
Hide answer choices A
A 35 N
C
81.7 N
123.7 N
D 371 N
Fm
45°
*
--Wt₂
The two ends of the barbell shown are made of the same material. Which of the points shown is at the barbell’s center of gravity?
Chapter 8 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 8 - An object is acted upon by two (and only two)...Ch. 8 - Prob. 2CQCh. 8 - Could a ladder on a level floor lean against a...Ch. 8 - If you are using a rope to raise a tall mast,...Ch. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - Prob. 7CQCh. 8 - A spring exerts a 10 N force after being stretched...Ch. 8 - The left end of a spring is attached to a wall....Ch. 8 - A spring is attached to the floor and pulled...
Ch. 8 - A typical mattress has a network of springs that...Ch. 8 - Take a spring and cut it in half to make two...Ch. 8 - A wire is stretched right to its breaking point by...Ch. 8 - Steel nails are rigid and unbending. Steel wool is...Ch. 8 - The rod in Figure Q8.15 pivots around an axle at...Ch. 8 - Two children hold opposite ends of a lightweight,...Ch. 8 - Prob. 17MCQCh. 8 - Prob. 18MCQCh. 8 - Prob. 19MCQCh. 8 - Prob. 20MCQCh. 8 - Prob. 21MCQCh. 8 - Prob. 22MCQCh. 8 - You have a heavy piece of equipment hanging from a...Ch. 8 - Prob. 24MCQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Youre carrying a 3.6-m-long, 25 kg pole to a...Ch. 8 - Prob. 6PCh. 8 - How much torque must the pin exert to keep the rod...Ch. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Consider the procedure for measuring a womans...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - The stability of a vehicle is often rated by the...Ch. 8 - You want to slowly push a stiff board across a 20...Ch. 8 - Prob. 20PCh. 8 - A car manufacturer claims that you can drive its...Ch. 8 - Prob. 22PCh. 8 - One end of a spring is attached to a wall. A 25 N...Ch. 8 - An orthodontic spring, connected between the upper...Ch. 8 - Experiments using optical tweezers measure the...Ch. 8 - A spring has an unstretched length of 10 cm. It...Ch. 8 - One end of a 10-cm-long spring is attached to the...Ch. 8 - A spring stretches 5.0 cm when a 0.20 kg block is...Ch. 8 - A 1.2 kg block is hung from a vertical spring,...Ch. 8 - You need to make a spring scale to measure the...Ch. 8 - A force stretches a wire by 1.0 mm. a. A second...Ch. 8 - What hanging mass will stretch a 2.0-m-long,...Ch. 8 - How much force does it take to stretch a...Ch. 8 - An 80-cm-long, 1.0-mm-diameter steel guitar string...Ch. 8 - A student is testing a 1.0 m length of...Ch. 8 - A 1.2-m-long steel rod with a diameter of 0.50 cm...Ch. 8 - A mineshaft has an ore elevator hung from a single...Ch. 8 - The normal force of the ground on the foot can...Ch. 8 - A three-legged wooden bar stool made out of solid...Ch. 8 - Prob. 40PCh. 8 - A glass optical fiber in a communications system...Ch. 8 - The Achilles tendon connects the muscles in your...Ch. 8 - Prob. 43GPCh. 8 - Prob. 44GPCh. 8 - Using the information in Figure 8.2, calculate the...Ch. 8 - A woman weighing 580 N does a pushup from her...Ch. 8 - Prob. 47GPCh. 8 - Prob. 48GPCh. 8 - Prob. 49GPCh. 8 - The wheel of mass m in Figure P8.50 is pulled on...Ch. 8 - A 5.0 kg mass hanging from a spring scale is...Ch. 8 - Two identical, side-by-side springs with spring...Ch. 8 - Two springs have the same equilibrium length but...Ch. 8 - Figure P8.54 shows two springs attached to a block...Ch. 8 - A 60 kg student is standing atop a spring in an...Ch. 8 - A 25 kg child bounces on a pogo stick. The pogo...Ch. 8 - Figure P8.57 shows a lightweight plank supported...Ch. 8 - In the hammer throw, an athlete spins a heavy mass...Ch. 8 - There is a disk of cartilage between each pair of...Ch. 8 - In Example 8.1, the tension in the biceps tendon...Ch. 8 - Larger animals have sturdier bones than smaller...Ch. 8 - Orb spiders make silk with a typical diameter of...Ch. 8 - Prob. 63MSPPCh. 8 - Prob. 64MSPPCh. 8 - Prob. 65MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardThe fishing pole in Figure P8.3 makes an angle of 20.0° with the horizontal. What is the magnitude of the torque exerted by the fish about an axis perpendicular to the page and pass- ing through the angler's hand if the fish pulls on the fishing line with a force F = 1.00 × 10² N at an angle 37.0° below the horizontal? The force is applied at a point 2.00 m from the angler's hands. 120.0° 87.0° -2.00 m- 120.0° 100 N Figure P8.3arrow_forwardA refrigerator of width w and height h rests on a rough incline as in Figure P8.25. Find an expression for the maximum value 0 can have before the refrigerator tips over. Note, the contact point between the refrigerator and incline shifts as 0 increases and treat the refrigerator as a uniform box.arrow_forward
- Shown is, a 70 kg man walks out on a 10 kg beam that rests on, but is not attached to, two supports. When the beam just starts to tip, what is the force exerted on the beam by the right support?arrow_forwardWhen you bend over, a series of large muscles, the erector spinae, pull on your spine to hold you up. Figure shows a simplified model of the spine as a rod of length L that pivots at its lower end. In this model, the center of gravity of the 320 N weight of the upper torso is at the center of the spine. The 160 N weight of the head and arms acts at the top of the spine. The erector spinae muscles are modeled as a single muscle that acts at an 12° angle to the spine. Suppose the person shown bends over to an angle of 30° from the horizontal. a. What is the tension in the erector muscle? Hint: Align your x-axis with the axis of the spine.b. A force from the pelvic girdle acts on the base of the spine. What is the component of this force in the direction of the spine? (This large force is the cause of many back injuries).arrow_forwardThe main muscles that hold your head upright attach to your spine in back of the point where your head pivots on your neck. Figure P8.66 shows typical numbers for the distance from the pivot to the muscle attachment point and the distance from the pivot to the center of gravity of the head. The muscles pull down to keep your head upright. If the muscle relaxes—if, for instance, you doze in one of your classes besides Physics—your head tips forward. In the questions that follow, assume that your head has a mass of 4.8 kg, and that you maintain the relative angle between your head and your spine. a. With the head held level, as shown, what muscle force is needed to keep a 4.8 kg head upright?b. If you tip your body forward so that your spine is level with the ground, what muscle force is needed to keep your head in the same orientation relative to the spine?c. If you tip your body backward, you will reach a point where no muscle force is needed to keep your head upright. For the…arrow_forward
- A cat walks along a plank with mass M = 6.00 kg. The plank is supported by two sawhorses. The center of mass of theplank is a distance d1 = 0.850 m to the left of sawhorse B. When the cat is a distance d2 = 1.11 m to the right of sawhorseB, the plank just begins to tip. What is the mass of the cat, m?arrow_forwardAn athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 70 cm long and has a mass of 3.8 kg, with the center of mass at 40% of the arm length from the shoulder. a. What is the magnitude of the torque about his shoulder due to the weight of the ball and his arm if he holds his arm straight out to his side, parallel to the floor? b. What is the magnitude of the torque about his shoulder due to the weight of the ball and his arm if he holds his arm straight, but 45∘ below horizontal?arrow_forwardA uniform 35.0-kg beam of length ℓ = 5.00 m is supported by a vertical rope located d = 1.20 m from its left end as in Figure P8.8. The right end of the beam is supported by a vertical column. Find (a) the tension in the rope and (b) the force that the column exerts on the right end of the beam.arrow_forward
- A 5.4 kgkg cat and a 2.5 kgkg bowl of tuna fish are at opposite ends of the 4.0-mm-long seesaw. How far to the left of the pivot must a 3.8 kgkg cat stand to keep the seesaw balanced?arrow_forwardItem 6 A 4.80-m-long, 500 kg steel uniform beam extends horizontally from the point where it has been bolted to the framework of a new building under construction. A 70 kg construction worker stands at the far end of the beam. Part A What is the magnitude of the torque about the bolt due to the worker and the weight of the beam? T = VE ΑΣΦ ? N.marrow_forwardMany aspects of a gymnast's motion can be modeled by representing the gymnast by four segments consisting of arms, torso (including the head), thighs, and lower legs, as in Figure P8.85. Figure P8.85b shows arrows of lengths reg locat- ing the center of gravity of each segment. Use the data below and the coordinate system shown in Figure P8.85b to locate the center of gravity of the gymnast shown in Figure P8.85a. Masses for the arms, thighs, and legs include both appendages. Mass (kg) "eg (m) 0.239 Segment Length (m) 6.87 Arms 0.548 0.337 33.57 Torso 0.601 14.07 0.374 Thighs 0.151 0.227 7.54 Legs 0.350 Thigh O Arm Leg 60° 60° Torso Figure P8.85arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning