
College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 23MCQ
You have a heavy piece of equipment hanging from a 1.0-mm-diameter wire. Your supervisor asks that the length of the wire be doubled without changing how far the wire stretches. What diameter must the new wire have?
A. 1.0 mm
B. 1.4 mm
C. 2.0 mm
D. 4.0 mm
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
9 V
300 Ω
www
100 Ω 200 Ω
www
400 Ω
500 Ω
www
600 Ω
ww
700 Ω
Figure 1: Circuit symbols for a variety of useful circuit elements
Problem 04.07 (17 points). Answer the following questions related to the figure below.
A What is the equivalent resistance of the network of resistors in the circuit below?
B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance
is zero), how much current flows through it in this circuit?
C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger
or smaller? By how much?
D In the ideal battery case, calculate the current through and the voltage across each
resistor in the circuit.
help
If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)
Chapter 8 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 8 - An object is acted upon by two (and only two)...Ch. 8 - Prob. 2CQCh. 8 - Could a ladder on a level floor lean against a...Ch. 8 - If you are using a rope to raise a tall mast,...Ch. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - Prob. 7CQCh. 8 - A spring exerts a 10 N force after being stretched...Ch. 8 - The left end of a spring is attached to a wall....Ch. 8 - A spring is attached to the floor and pulled...
Ch. 8 - A typical mattress has a network of springs that...Ch. 8 - Take a spring and cut it in half to make two...Ch. 8 - A wire is stretched right to its breaking point by...Ch. 8 - Steel nails are rigid and unbending. Steel wool is...Ch. 8 - The rod in Figure Q8.15 pivots around an axle at...Ch. 8 - Two children hold opposite ends of a lightweight,...Ch. 8 - Prob. 17MCQCh. 8 - Prob. 18MCQCh. 8 - Prob. 19MCQCh. 8 - Prob. 20MCQCh. 8 - Prob. 21MCQCh. 8 - Prob. 22MCQCh. 8 - You have a heavy piece of equipment hanging from a...Ch. 8 - Prob. 24MCQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Youre carrying a 3.6-m-long, 25 kg pole to a...Ch. 8 - Prob. 6PCh. 8 - How much torque must the pin exert to keep the rod...Ch. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Consider the procedure for measuring a womans...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - The stability of a vehicle is often rated by the...Ch. 8 - You want to slowly push a stiff board across a 20...Ch. 8 - Prob. 20PCh. 8 - A car manufacturer claims that you can drive its...Ch. 8 - Prob. 22PCh. 8 - One end of a spring is attached to a wall. A 25 N...Ch. 8 - An orthodontic spring, connected between the upper...Ch. 8 - Experiments using optical tweezers measure the...Ch. 8 - A spring has an unstretched length of 10 cm. It...Ch. 8 - One end of a 10-cm-long spring is attached to the...Ch. 8 - A spring stretches 5.0 cm when a 0.20 kg block is...Ch. 8 - A 1.2 kg block is hung from a vertical spring,...Ch. 8 - You need to make a spring scale to measure the...Ch. 8 - A force stretches a wire by 1.0 mm. a. A second...Ch. 8 - What hanging mass will stretch a 2.0-m-long,...Ch. 8 - How much force does it take to stretch a...Ch. 8 - An 80-cm-long, 1.0-mm-diameter steel guitar string...Ch. 8 - A student is testing a 1.0 m length of...Ch. 8 - A 1.2-m-long steel rod with a diameter of 0.50 cm...Ch. 8 - A mineshaft has an ore elevator hung from a single...Ch. 8 - The normal force of the ground on the foot can...Ch. 8 - A three-legged wooden bar stool made out of solid...Ch. 8 - Prob. 40PCh. 8 - A glass optical fiber in a communications system...Ch. 8 - The Achilles tendon connects the muscles in your...Ch. 8 - Prob. 43GPCh. 8 - Prob. 44GPCh. 8 - Using the information in Figure 8.2, calculate the...Ch. 8 - A woman weighing 580 N does a pushup from her...Ch. 8 - Prob. 47GPCh. 8 - Prob. 48GPCh. 8 - Prob. 49GPCh. 8 - The wheel of mass m in Figure P8.50 is pulled on...Ch. 8 - A 5.0 kg mass hanging from a spring scale is...Ch. 8 - Two identical, side-by-side springs with spring...Ch. 8 - Two springs have the same equilibrium length but...Ch. 8 - Figure P8.54 shows two springs attached to a block...Ch. 8 - A 60 kg student is standing atop a spring in an...Ch. 8 - A 25 kg child bounces on a pogo stick. The pogo...Ch. 8 - Figure P8.57 shows a lightweight plank supported...Ch. 8 - In the hammer throw, an athlete spins a heavy mass...Ch. 8 - There is a disk of cartilage between each pair of...Ch. 8 - In Example 8.1, the tension in the biceps tendon...Ch. 8 - Larger animals have sturdier bones than smaller...Ch. 8 - Orb spiders make silk with a typical diameter of...Ch. 8 - Prob. 63MSPPCh. 8 - Prob. 64MSPPCh. 8 - Prob. 65MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Contrast the fertility of an allotetraploid with an autotriploid and an autotetraploid.
Concepts of Genetics (12th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
Microphylls are found in which plant group? (A) lycophytes (B) liverworts (C) ferns (D) hornworts
Campbell Biology (11th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forward
- Question: For a liquid with typical values a = 10-3K-¹ K = 10-4 bar-1 V=50 cm³ mol-1, Cp 200 J mol-1K-1, calculate the following quantities at 300 K and 1 bar for one mole of gas: 1. () P ән 2. (9) T 3. (V) T 4. (1) P 5. (9) T 6. Cv 7. (OF)Tarrow_forwardA,B,C AND Darrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 210. Sometimes the Helmholtz free energy F(T, V, N) divided by temperature, T, is an interesting quantity. For example, the quantity is proportional to the logarithm of the equilibrium constant or solubilities. A. Derive a relationship showing that Find the constant of proportionality. a F αυ ƏT T B. Suppose F(T) depends on temperature in the following way: F(T)=2aT²+bT. Find S(T) and U(T).arrow_forwardchoosing East (e) is not correct!arrow_forwarddisks have planes that are parallel and centered Three polarizing On a common axis. The direction of the transmission axis Colish dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with int intensity So = 790 W/m². Calculate the transmitted intensity if 81=28.0° O2-35.0°, and O3 = 40.0° w/m² horizontal Өз 02arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning


Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY