Mechanics of Materials, 7th Edition
7th Edition
ISBN: 9780073398235
Author: Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David F. Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.9, Problem 154P
To determine
Find the pressure in the tank.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H.W.7 A rigid steel bar ABC is supported by three rods.
There is no strain in the rods before load P is applied. After
load P is applied, the axial strain in rod (1) is 1,200 µɛ.
(1)
2,000 mm
(a) Determine the axial strain in rods (2).
(b) Determine the axial strain in rods (2) if there is a 0.5 mm
gap in the connections between rods (2) and the rigid
bar before the load is applied.
520 mm
400 mm
1,250 mm
(2)
H.W.7 A rigid steel bar ABC is supported by three rods.
There is no strain in the rods before load P is applied. After
load P is applied, the axial strain in rod (1) is 1,200 µue.
(1)
2,000 mm
(a) Determine the axial strain in rods (2).
(b) Determine the axial strain in rods (2) if there is a 0.5 mm
gap in the connections between rods (2) and the rigid
bar before the load is applied.
520 mm
400 mm
1,250 mm
(2)
A spherical gas container having an inner diameter of 5 m and a wall thickness of 24 mm is made of steel
for which E = 200 GPa and v = 0.29. Knowing that the gage pressure in the container is increased from zero
to 1.8 MPa, determine (a) the maximum normal stress in the container, (b) the corresponding increase in the
diameter of the container.
Hint: refer back to earlier notes for relationship between strain, Poisson's ratio, and stress in two directions
Sm
The unpressurized cylindrical storage tank shown has a 5-mm wall thickness
and is made of steel having a 400-MPa ultimate strength in tension.
Determine the maximum height h to which it can be filled with water if a
factor of safety of 4.0 is desired. (Density of water = 1000 kg/m³.)
14.5 m
Hint: recall pressure (p) due to a column of water is p = yh
Chapter 7 Solutions
Mechanics of Materials, 7th Edition
Ch. 7.1 - 7.1 through 7.4 For the given state of stress,...Ch. 7.1 - 7.1 through 7.4 For the given state of stress,...Ch. 7.1 - 7.1 through 7.4 For the given state of stress,...Ch. 7.1 - 7.1 through 7.4 For the given state of stress,...Ch. 7.1 - 7.5 through 7.8 For the given state of stress,...Ch. 7.1 - 7.5 through 7.8 For the given state of stress,...Ch. 7.1 - 7.5 through 7.8 For the given state of stress,...Ch. 7.1 - 7.5 through 7.8 For the given state of stress,...Ch. 7.1 - 7.9 through 7.12 For the given state of stress,...Ch. 7.1 - 7.9 through 7.12 For the given state of stress,...
Ch. 7.1 - 7.9 through 7.12 For the given state of stress,...Ch. 7.1 - 7.9 through 7.12 For the given state of stress,...Ch. 7.1 - 7.13 through 7.16 For the given state of stress,...Ch. 7.1 - 7.13 through 7.16 For the given state of stress,...Ch. 7.1 - 7.13 through 7.16 For the given state of stress,...Ch. 7.1 - 7.13 through 7.16 For the given state of stress,...Ch. 7.1 - 7.17 and 7.18 The grain of a wooden member forms...Ch. 7.1 - 7.17 and 7.18 The grain of a wooden member forms...Ch. 7.1 - Two wooden members of 80 120-mm uniform...Ch. 7.1 - Two wooden members of 80 120-mm uniform...Ch. 7.1 - The centric force P is applied to a short post as...Ch. 7.1 - Two members of uniform cross section 50 80 mm are...Ch. 7.1 - The axle of an automobile is acted upon by the...Ch. 7.1 - A 400-lb vertical force is applied at D to a gear...Ch. 7.1 - A mechanic uses a crowfoot wrench to loosen a bolt...Ch. 7.1 - The steel pipe AB has a 102-mm outer diameter and...Ch. 7.1 - For the state of plane stress shown, determine the...Ch. 7.1 - For the state of plane stress shown, determine (a)...Ch. 7.1 - For the state of plane stress shown, determine (a)...Ch. 7.1 - Determine the range of values of x for which the...Ch. 7.2 - Solve Probs. 7.5 and 7.9, using Mohr's circle. 7.5...Ch. 7.2 - Solve Probs. 7.7 and 7.11, using Mohrs circle. 7.5...Ch. 7.2 - Solve Prob. 7.10, using Mohrs circle. 7.9 through...Ch. 7.2 - Solve Prob. 7.12, using Mohr's circle. 7.9 through...Ch. 7.2 - Solve Prob. 7.13, using Mohr's circle. 7.13...Ch. 7.2 - Solve Prob. 7.14, using Mohr's circle. 7.13...Ch. 7.2 - Solve Prob. 7.15, using Mohr's circle. 7.13...Ch. 7.2 - Solve Prob. 7.16, using Mohr's circle. 7.13...Ch. 7.2 - Solve Prob. 7.17, using Mohr's circle. 7.17 and...Ch. 7.2 - Solve Prob. 7.18, using Mohr's circle. 7.17 and...Ch. 7.2 - Solve Prob. 7.19, using Mohr's circle. 7.19 Two...Ch. 7.2 - Solve Prob. 7.20, using Mohr's circle. 7.20 Two...Ch. 7.2 - Solve Prob. 7.21, using Mohrs circle. 7.21 The...Ch. 7.2 - Solve Prob. 7.22, using Mohrs circle. 7.22 Two...Ch. 7.2 - Solve Prob. 7.23, using Mohr's circle. 7.23 The...Ch. 7.2 - Solve Prob. 7.24, using Mohr's circle 7.24 A...Ch. 7.2 - Solve Prob. 7.25, using Mohrs circle. 7.25 A...Ch. 7.2 - Solve Prob. 7.26, using Mohrs circle. 7.26 The...Ch. 7.2 - Solve Prob. 7.27, using Mohr's circle. 7.27 For...Ch. 7.2 - Solve Prob. 7.28, using Mohrs circle. 7.28 For the...Ch. 7.2 - Solve Prob. 7.29, using Mohr's circle. 7.29 For...Ch. 7.2 - Solve Prob. 7.30, using Mohrs circle. 7.30...Ch. 7.2 - Solve Prob. 7.29, using Mohr's circle and assuming...Ch. 7.2 - 7.54 and 7.55 Determine the principal planes and...Ch. 7.2 - 7.54 and 7.55 Determine the principal planes and...Ch. 7.2 - 7.56 and 7.57 Determine the principal planes and...Ch. 7.2 - 7.56 and 7.57 Determine the principal planes and...Ch. 7.2 - For the element shown, determine the range of...Ch. 7.2 - For the element shown, determine the range of...Ch. 7.2 - For the state of stress shown, determine the range...Ch. 7.2 - For the state of stress shown, determine the range...Ch. 7.2 - For the state of stress shown, determine the range...Ch. 7.2 - For the state of stress shown, it is known that...Ch. 7.2 - The Mohr's circle shown corresponds to the state...Ch. 7.2 - (a) Prove that the expression xy 2xywhere x,...Ch. 7.5 - For the state of plane stress shown, determine the...Ch. 7.5 - For the state of plane stress shown, determine the...Ch. 7.5 - For the state of stress shown, determine the...Ch. 7.5 - For the state of stress shown, determine the...Ch. 7.5 - 7.70 and 7.71 For the state of stress shown,...Ch. 7.5 - 7.70 and 7.71 For the state of stress shown,...Ch. 7.5 - 7.72 and 7.73 For the state of stress shown,...Ch. 7.5 - 7.72 and 7.73 For the state of stress shown,...Ch. 7.5 - For the state of stress shown, determine the value...Ch. 7.5 - For the state of stress shown, determine the value...Ch. 7.5 - Prob. 76PCh. 7.5 - For the state of stress shown, determine two...Ch. 7.5 - For the state of stress shown, determine the range...Ch. 7.5 - Prob. 79PCh. 7.5 - Prob. 80PCh. 7.5 - The state of plane stress shown occurs in a...Ch. 7.5 - Prob. 82PCh. 7.5 - The state of plane stress shown occurs in a...Ch. 7.5 - Solve Prob. 7.83, using the...Ch. 7.5 - The 38-mm-diameter shaft AB is made of a grade of...Ch. 7.5 - Solve Prob. 7.85, using the...Ch. 7.5 - The 1.5-in.-diameter shaft AB is made of a grade...Ch. 7.5 - Prob. 88PCh. 7.5 - Prob. 89PCh. 7.5 - Prob. 90PCh. 7.5 - Prob. 91PCh. 7.5 - Prob. 92PCh. 7.5 - Prob. 93PCh. 7.5 - Prob. 94PCh. 7.5 - Prob. 95PCh. 7.5 - Prob. 96PCh. 7.5 - Prob. 97PCh. 7.6 - A spherical pressure vessel has an outer diameter...Ch. 7.6 - A spherical gas container having an inner diameter...Ch. 7.6 - The maximum gage pressure is known to be 1150 psi...Ch. 7.6 - Prob. 101PCh. 7.6 - Prob. 102PCh. 7.6 - A basketball has a 300-mm outer diameter and a...Ch. 7.6 - The unpressurized cylindrical storage tank shown...Ch. 7.6 - Prob. 105PCh. 7.6 - Prob. 106PCh. 7.6 - Prob. 107PCh. 7.6 - Prob. 108PCh. 7.6 - Prob. 109PCh. 7.6 - Prob. 110PCh. 7.6 - Prob. 111PCh. 7.6 - The cylindrical portion of the compressed-air tank...Ch. 7.6 - Prob. 113PCh. 7.6 - Prob. 114PCh. 7.6 - Prob. 115PCh. 7.6 - Square plates, each of 0.5-in. thickness, can be...Ch. 7.6 - The pressure tank shown has a 0.375-in. wall...Ch. 7.6 - Prob. 118PCh. 7.6 - Prob. 119PCh. 7.6 - A pressure vessel of 10-in. inner diameter and...Ch. 7.6 - Prob. 121PCh. 7.6 - A torque of magnitude T = 12 kN-m is applied to...Ch. 7.6 - The tank shown has a 180-mm inner diameter and a...Ch. 7.6 - The compressed-air tank AB has a 250-rnm outside...Ch. 7.6 - In Prob. 7.124, determine the maximum normal...Ch. 7.6 - Prob. 126PCh. 7.6 - Prob. 127PCh. 7.9 - 7.128 through 7.131 For the given state of plane...Ch. 7.9 - 7.128 through 7.131 For the given state of plane...Ch. 7.9 - Prob. 130PCh. 7.9 - 7.128 through 7.131 For the given state of plane...Ch. 7.9 - Prob. 132PCh. 7.9 - Prob. 133PCh. 7.9 - Prob. 134PCh. 7.9 - 7.128 through 7.131 For the given state of plane...Ch. 7.9 - 7.136 through 7.139 The following state of strain...Ch. 7.9 - Prob. 137PCh. 7.9 - Prob. 138PCh. 7.9 - Prob. 139PCh. 7.9 - Prob. 140PCh. 7.9 - 7.140 through 7.143 For the given state of plane...Ch. 7.9 - Prob. 142PCh. 7.9 - Prob. 143PCh. 7.9 - Prob. 144PCh. 7.9 - The strains determined by the use of the rosette...Ch. 7.9 - Prob. 146PCh. 7.9 - Prob. 147PCh. 7.9 - Show that the sum of the three strain measurements...Ch. 7.9 - Prob. 149PCh. 7.9 - Prob. 150PCh. 7.9 - Solve Prob. 7.150, assuming that the rosette at...Ch. 7.9 - Prob. 152PCh. 7.9 - Prob. 153PCh. 7.9 - Prob. 154PCh. 7.9 - Prob. 155PCh. 7.9 - The given state of plane stress is known to exist...Ch. 7.9 - The following state of strain has been determined...Ch. 7 - A steel pipe of 12-in. outer diameter is...Ch. 7 - Two steel plates of uniform cross section 10 80...Ch. 7 - Prob. 160RPCh. 7 - Prob. 161RPCh. 7 - For the state of stress shown, determine the...Ch. 7 - For the state of stress shown, determine the value...Ch. 7 - The state of plane stress shown occurs in a...Ch. 7 - The compressed-air tank AB has an inner diameter...Ch. 7 - For the compressed-air tank and loading of Prob....Ch. 7 - Prob. 167RPCh. 7 - Prob. 168RPCh. 7 - Prob. 169RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A rosette consisting of 3 gages forming, respectively, angles of θa, θb and θc with the x-axis is attached to the free surface of machine components made of material with a given Poisson’s ratio v and Modulus of elasticity E as shown in Fig. 6. Take note that strain values given above are the gage readings and not principal strains. PLEASE ANSWER I,G,Harrow_forwardQ.4) By using the strain rosette shown in figure below, we obtained the following normal strain data at a point on the surface of a machine part made of steel [E = 207 GPa, v= 0.29]: ε-770 μ, E = 520 µ, & = - 435 µ (a) Determine the strain components &, &, and %y at the point. (b) Determine the principal strains and the maximum in-plane shear strain at the point using Mohr's circle. (c) Draw a sketch showing the angle Op, the principal strain deformations, and the maximum in-plane shear strain distortions. (d) Determine the magnitude of the absolute maximum shear strain. b ' 60°| 60°arrow_forwardProve that the sum of the normal strains in perpendicular directions is constant, i.e., Px + Py = Px′ + Py′arrow_forward
- A steel cable is used to support an elevator cage at the bottom of a 1700-ft-deep mineshaft. A uniform normal strain of 220 μin./in. is produced in the cable by the weight of the cage. At each point, the weight of the cable produces an additional normal strain that is proportional to the length of the cable below the point. Assume D = 1700 ft and d= 700 ft. If the total normal strain in the cable at the cable drum (upper end of the cable) is 520 uin./in., determine (a) the strain in the cable at a depth of 700 ft. (b) the total elongation of the cable. Drum Cable Answers: (a) ε = (b) 8 = y i i Elevator cage D X μin./in. in.arrow_forward3) An eccentric force P is applied as shown in Fig. 2 to a steel bar of 25 x 90-mm cross section. The strains at A and B have been measured and found to be ƐA = + 400µ and be ЄB = - - 90μ. Knowing that E = 210 GPa, determine (a) the magnitude of force P, (b) the distance d, and (c) neatly draw the stress distribution diagrams of the system. 30 mm 25 mm- 90 mm A B Fig. 2 1 45 mm 15 mmarrow_forwardA steel cable is used to support an elevator cage at the bottom of a 1900-ft-deep mineshaft. A uniform normal strain of 240 pin./in. is produced in the cable by the weight of the cage. At each point, the weight of the cable produces an additional normal strain that is proportional to the length of the cable below the point. Assume D = 1900 ft and d = 500 ft. If the total normal strain in the cable at the cable drum (upper end of the cable) is 780 μin./in., determine (a) the strain in the cable at a depth of 500 ft. (b) the total elongation of the cable. Drum Cable Answers: (a) ε = (b) 8 = i i d Elevator cage D X pin./in. in.arrow_forward
- Read carefully please and solve thisarrow_forwardA rigid steel bar is supported by three rods as shown. There is no strain in the rods before the load P is applied. After load P is applied, the normal strain in rods (1) is 2350 μm/m. Assume initial rod lengths of L₁ = 1,250 mm and L₂ = 2,000 mm. Determine the normal strain in rod (2). (1) A L₁ (2) Rigid bar 1721 μm/m 1858 μm/m O 1347 μm/m O 1469 μm/m 943 μm/m B L₂ (1)arrow_forwardA steel cable is used to support an elevator cage at the bottom of a 2400-ft-deep mineshaft. A uniform normal strain of 300 μin./in. is produced in the cable by the weight of the cage. At each point, the weight of the cable produces an additional normal strain that is proportional to the length of the cable below the point. Assume D = 2400 ft and d = 200 ft. If the total normal strain in the cable at the cable drum (upper end of the cable) is 620 uin./in., determine (a) the strain in the cable at a depth of 200 ft. (b) the total elongation of the cable. Drum Answers: (a) Cable + ε = i Elevator cage D X uin./in.arrow_forward
- Rigid bar ABCD is supported by two bars as shown. There is no strain in the vertical bars before load P is applied. After load P is applied, the normal strain in bar (2) is measured as −3,300 μm/m. Use the dimensions L1 = 1,600 mm, L2 = 1,200 mm, a = 240 mm, b = 420 mm, and c = 180 mm. Determine (a) the normal strain in bar (1). (b) the normal strain in bar (1) if there is a 1 mm gap in the connection at pin C before the load is applied. (c) the normal strain in bar (1) if there is a 1 mm gap in the connection at pin B before the load is applied.arrow_forwardWhen an axial load is applied to the ends of the bar shown, where L₁ = 30 in. and L₂ = 80 in., the total elongation of the bar between joints A and C is 0.100 in. In segment (1), the normal strain is measured as 1700 µin./in. Determine the normal strain in segment (2) of the bar. A (1) L₁ 662 μin./in. O 784 μin./in. O 373 μin./in. O 719 μin./in. O 613 μin./in. B (2) L2arrow_forwardProve that the sum of the normal strains in perpendicular directions is constant, i.e., P x+ P y = P x + P y.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Lec21, Part 5, Strain transformation; Author: Mechanics of Materials (Libre);https://www.youtube.com/watch?v=sgJvz5j_ubM;License: Standard Youtube License