
The state of plane stress shown occurs in a machine component made of a steel with σy = 30 ksi. Using the maximum- distortion-energy criterion, determine whether yield will occur when (a) τXV = 6 ksi, (b) τXV = 12 ksi, (c) τXV = 14 ksi. If yield does not occur, determine the corresponding factor of safety.
Fig. P7.164
(a)

Check the yield will occur for the given condition or not?.
Find the corresponding factor of safety for not occurring the yield.
Answer to Problem 164RP
The yielding will
Explanation of Solution
Given information:
The normal stress in x-axis is
The normal stress in y-axis is
The shearing stress in xy-plane is
The allowable yield strength of the steel is
Use maximum distortion-energy theory.
Calculation:
Consider the normal stress in z-axis is
The minimum principal stress is
Find the average normal stress
Substitute 24 ksi for
Find the radius of the Mohr circle (R) using the equation.
Substitute 24 ksi for
Find the maximum principal stress
Substitute 19 ksi for
Find the minimum principal stress
Substitute 19 ksi for
Check the yielding condition using the Maximum-distortion-energy criteria as follows;
Substitute 26.81 ksi for
The yielding will not occur.
Find the factor of safety (FOS) using the relation.
Substitute 30 ksi for
Therefore, the yielding will
(b)

Check the yield will occur for the given condition or not?.
Find the corresponding factor of safety for not occurring the yield.
Answer to Problem 164RP
The yielding will
Explanation of Solution
Given information:
The normal stress in x-axis is
The normal stress in y-axis is
The shearing stress in xy-plane is
The allowable yield strength of the steel is
Use maximum distortion-energy theory.
Calculation:
Consider the normal stress in z-axis is
The minimum principal stress is
Find the average normal stress
Substitute 24 ksi for
Find the radius of the Mohr circle (R) using the equation.
Substitute 24 ksi for
Find the maximum principal stress
Substitute 19 ksi for
Find the minimum principal stress
Substitute 19 ksi for
Check the yielding condition using the Maximum-distortion-energy criteria as follows;
Substitute 32 ksi for
The yielding will not occur.
Find the factor of safety (FOS) using the relation.
Substitute 30 ksi for
Therefore, the yielding will
(c)

Check the yield will occur for the given condition or not?.
Find the corresponding factor of safety for not occurring the yield.
Answer to Problem 164RP
The yielding will occur.
Explanation of Solution
Given information:
The normal stress in x-axis is
The normal stress in y-axis is
The shearing stress in xy-plane is
The allowable yield strength of the steel is
Use maximum distortion-energy theory.
Calculation:
Consider the normal stress in z-axis is
The minimum principal stress is
Find the average normal stress
Substitute 24 ksi for
Find the radius of the Mohr circle (R) using the equation.
Substitute 24 ksi for
Find the maximum principal stress
Substitute 19 ksi for
Find the minimum principal stress
Substitute 19 ksi for
Check the yielding condition using the Maximum-distortion-energy criteria as follows;
Substitute 33.866 ksi for
The yielding will occur.
Therefore, the yielding will occur.
Want to see more full solutions like this?
Chapter 7 Solutions
Mechanics of Materials, 7th Edition
- 1. The rotating steel shaft is simply supported by bearings at points of B and C, and is driven by a spur gear at D, which has a 6-in pitch diameter. The force F from the drive gear acts at a pressure angle of 20°. The shaft transmits a torque to point A of TA =3000 lbĘ in. The shaft is machined from steel with Sy=60kpsi and Sut=80 kpsi. (1) Draw a shear force diagram and a bending moment diagram by F. According to your analysis, where is the point of interest to evaluate the safety factor among A, B, C, and D? Describe the reason. (Hint: To find F, the torque Tд is generated by the tangential force of F (i.e. Ftangential-Fcos20°) When n=2.5, K=1.8, and K₁ =1.3, determine the diameter of the shaft based on (2) static analysis using DE theory (note that fatigue stress concentration factors need to be used for this question because the loading condition is fatigue) and (3) a fatigue analysis using modified Goodman. Note) A standard diameter is not required for the questions. 10 in Darrow_forward3 N2=28 P(diametral pitch)=8 for all gears Coupled to 25 hp motor N3=34 Full depth spur gears with pressure angle=20° N₂=2000 rpm (1) Compute the circular pitch, the center-to-center distance, and base circle radii. (2) Draw the free body diagram of gear 3 and show all the forces and the torque. (3) In mounting gears, the center-to-center distance was reduced by 0.1 inch. Calculate the new values of center-to-center distance, pressure angle, base circle radii, and pitch circle diameters. (4)What is the new tangential and radial forces for gear 3? (5) Under the new center to center distance, is the contact ratio (mc) increasing or decreasing?arrow_forward2. A flat belt drive consists of two 4-ft diameter cast-iron pulleys spaced 16 ft apart. A power of 60 hp is transmitted by a pulley whose speed is 380 rev/min. Use a service factor (Ks) pf 1.1 and a design factor 1.0. The width of the polyamide A-3 belt is 6 in. Use CD=1. Answer the following questions. (1) What is the total length of the belt according to the given geometry? (2) Find the centrifugal force (Fc) applied to the belt. (3) What is the transmitted torque through the pulley system given 60hp? (4) Using the allowable tension, find the force (F₁) on the tight side. What is the tension at the loose side (F2) and the initial tension (F.)? (5) Using the forces, estimate the developed friction coefficient (f) (6) Based on the forces and the given rotational speed, rate the pulley set. In other words, what is the horse power that can be transmitted by the pulley system? (7) To reduce the applied tension on the tight side, the friction coefficient is increased to 0.75. Find out the…arrow_forward
- The tooth numbers for the gear train illustrated are N₂ = 24, N3 = 18, №4 = 30, №6 = 36, and N₁ = 54. Gear 7 is fixed. If shaft b is turned through 5 revolutions, how many turns will shaft a make? a 5 [6] barrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forward
- CE-112 solve this problem step by step and give me the correct answer pleasearrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning

