Organic Chemistry: Structure and Function
Organic Chemistry: Structure and Function
8th Edition
ISBN: 9781319079451
Author: K. Peter C. Vollhardt, Neil E. Schore
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 7.6, Problem 7.10E
Interpretation Introduction

Interpretation: The reason behind 30 % (CH3)COCH2CH3 , 60 % (CH3)COH and 10 % (CH3)C=CH2 formed upon reaction of 2-bromo-2-methylpropane in aqueous ethanol should be explained.

Concept introduction: Haloalkane solvolysis with ethanol, methanol or water is a typical example for unimolecuar substitution. It proceeds via two-step mechanism. The first slow step that determines rate is the removal of leaving group from the substrate haloalkane and generates a carbocation. Since the rate is only governed by substrate alone and no other nucleophile or solvent it is termed as unimolecuar substitution. The final step is attack of nucleophile on carbocation generated and formation of racemic products.

Tertiary or secondary halides undergo fastest unimolecuar substitution as they can readily form the tertiary carbocation followed by secondary and least reactive are primary.

Carbocations generated in solvolysis have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonated to yield small amount of alkene.

Blurred answer
Students have asked these similar questions
Macmillan Learning One of the molecules shown can be made using the Williamson ether synthesis. Identify the ether and draw the starting materials. А со C Strategy: Review the reagents, mechanism and steps of the Williamson ether synthesis. Determine which of the molecules can be made using the steps. Then analyze the two possible disconnection strategies and deduce the starting materials. Identify the superior route. Step 6: Put it all together. Complete the two-step synthesis by selecting the reagents and starting materials. C 1. 2. Answer Bank NaH NaOH NaOCH, снен, сен, он Сиси, Сне (СН), СОН (Сн, Св
Write the systematic name of each organic molecule: structure CH3 O CH3-CH-CH-C-CH3 OH HV. CH3-C-CH-CH2-CH3 OH CH3 O HO—CH, CH–CH—C CH3 OH 오-오 name X G ☐
HI Organic Functional Groups Predicting the reactants or products of esterification What is the missing reactant in this organic reaction? HO OH H +回 + H₂O 60013 Naomi V Specifically, in the drawing area below draw the skeletal ("line") structure of R. If there is more than one reasonable answer, you can draw any one of them. If there is no reasonable answer, check the No answer box under the drawing area. No answer Click and drag to start drawing a structure. Explanation Check 1 2 #3 $ 4 2025 % ala5 'a :☐ G & 67 8 Ar K enter Accessible 9 Q W E R TY U 1 tab , S H J K
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning