Concept explainers
(a)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the
functional group which is used as main suffix. - Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the
alkane is replaced by ‘yne’ ending, the name of alkyne is obtained. - Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of
alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain. - When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(b)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(c)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(d)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(e)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(f)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
EBK ORGANIC CHEMISTRY
- This is a synthesis question. Why is this method wrong or worse than the "correct" method? You could do it thiss way, couldn't you?arrow_forwardTry: Draw the best Lewis structure showing all non-bonding electrons and all formal charges if any: (CH3)3CCNO NCO- HN3 [CH3OH2]*arrow_forwardWhat are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forward
- IX) By writing the appropriate electron configurations and orbital box diagrams briefly EXPLAIN in your own words each one of the following questions: a) The bond length of the Br2 molecule is 2.28 Å, while the bond length of the compound KBr is 3.34 Å. The radius of K✶ is 1.52 Å. Determine the atomic radius in Å of the bromine atom and of the bromide ion. Br = Br b) Explain why there is a large difference in the atomic sizes or radius of the two (Br and Br). Tarrow_forwardWhen 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forwardWhen 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol. Which experimental number must be initialled by the Lab TA for the first run of Part 1 of the experiment? a) the heat capacity of the calorimeter b) Mass of sample c) Ti d) The molarity of the HCl e) Tfarrow_forward
- Predict products for the Following organic rxn/s by writing the structurels of the correct products. Write above the line provided" your answer D2 ①CH3(CH2) 5 CH3 + D₂ (adequate)" + 2 mited) 19 Spark Spark por every item. 4 CH 3 11 3 CH 3 (CH2) 4 C-H + CH3OH CH2 CH3 + CH3 CH2OH 0 CH3 fou + KMnDy→ C43 + 2 KMn Dy→→ C-OH ") 0 C-OH 1110 (4.) 9+3 =C CH3 + HNO 3 0 + Heat> + CH3 C-OH + Heat CH2CH3 - 3 2 + D Heat H 3 CH 3 CH₂ CH₂ C = CH + 2 H₂ → 2 2arrow_forwardWhen 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forwardQ6: Using acetic acid as the acid, write the balanced chemical equation for the protonation of the two bases shown (on the -NH2). Include curved arrows to show the mechanism. O₂N- O₂N. -NH2 -NH2 a) Which of the two Bronsted bases above is the stronger base? Why? b) Identify the conjugate acids and conjugate bases for the reactants. c) Identify the Lewis acids and bases in the reactions.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning