Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
9th Edition
ISBN: 9781319013387
Author: David S. Moore, George P. McCabe, Bruce A. Craig
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7.2, Problem 58E

Section 1:

To determine

To test: The significance test to test whether there is a difference in sprint speed of Elite players from the Canadian National team and a university squad.

Section 1:

Expert Solution
Check Mark

Answer to Problem 58E

Solution: There is a significant difference between the sprint speed of both types of players. The t -statistic is 2.89 which lies between P=0.01 and P=0.02 for 12 degrees of freedom.

Explanation of Solution

Calculation: The hypothesis is considered as that there is no difference in sprint speed of elite players and a university squad against the alternative that there is difference in the sprint speeds of the elite players and the university squad. Hence, the hypotheses are formulated as:

H0:μE=μUHa:μEμU

The two-sample t- test statistic is defined as:

t=(x1¯x2¯)(μ1μ2)s12n1+s22n2

Where,

x¯1=Mean of the treatment groupx¯2=Mean of the control groups1=Standard deviation of treatment groups2=Standard deviation of control group

n1=Size of treatment groupn2=Size of control groupμ1μ2=Difference of means

The difference of means is considered as 0 points as the null hypothesis states that there is no difference between the two sets of players. Substitute the provided values in the above-defined formula to compute the two sample t statistic. So,

t=(x1¯x2¯)(μ1μ2)s12n1+s22n2=(27.326)00.7216+1.5213=1.30.45=2.89

The P-value for the provided one-sided test is P(T2.89). For the second approximation, the degrees of freedom k is the smaller of n11 and n21.

n11 =161=15

n21 =131=12

So, the degree of freedom is 12. Compare the obtained value of t-statistic with the values in the table D for 12 degrees of freedom. The table D shows that the value of t=2.89 lies between P=0.005 and P=0.01. As the alternative is two-sided, double the tail area p. Hence, the value t=2.89 lies between P=0.01 and P=0.02.

To determine

To explain: The conclusion of the performed significance test.

Expert Solution
Check Mark

Answer to Problem 58E

Solution: The data strongly suggests that there is a significant difference between the sprint speed of the elite players of Canadian National team and a university squad.

Explanation of Solution

The t-test statistic is obtained as 2.89 in the previous part. For 12 degrees of freedom, the Table-D shows that the P lies between 0.01 and 0.02. This shows that P<0.05. So, the null hypothesis is rejected. Hence, it can be concluded that the data strongly suggest that there is a significant difference between the sprint speeds of both the types of players.

Section 2:

To determine

To test: The Significance test to test whether there is difference in peak heart rate of Elite players from the Canadian National team and the university squad.

Section 2:

Expert Solution
Check Mark

Answer to Problem 58E

Solution: The data strongly suggests that there is no significant difference between the peak heart rate of the elite players of Canadian National team and a university squad. The t-statistic is obtained as t=0.45 with Pvalue=0.661 for 12 degrees of freedom.

Explanation of Solution

Calculation: The hypothesis is considered as that there is no difference in peak heart rate of elite players and a university squad against the alternative that there is difference in peak heart rate of the elite players and university squad. Hence, the hypotheses are formulated as:

H0:μE=μUHa:μEμU

The two-sample t- test statistic is defined as:

t=(x1¯x2¯)(μ1μ2)s12n1+s22n2

Where,

x¯1=Mean of the treatment groupx¯2=Mean of the control groups1=Standard deviation of treatment groups2=Standard deviation of control group

n1=Size of treatment groupn2=Size of control groupμ1μ2=Difference of means

The difference of means is considered as 0 points as the null hypothesis states that there is no difference between the two sets of players. Substitute the provided values in the above-defined formula to compute the two sample t statistic. So,

t=(x1¯x2¯)(μ1μ2)s12n1+s22n2=(192.0193.0)06216+6213=12.24=0.45

The P-value for the provided one-sided test is P(T0.45). For the second approximation, the degrees of freedom k is the smaller of n11 and n21.

n11 =161=15

n21 =131=12

So, the degree of freedom is 12. Compare the obtained value of t- statistic with the values in the table D for 12 degrees of freedom. The table D shows that the value of t=0.45 lies beyond 0.25. Use the formula =TDIST (t, d.f, tails) to determine the exact P- value in Excel software. The screenshot is provided below:

Introduction to the Practice of Statistics, Chapter 7.2, Problem 58E , additional homework tip  1

Hence, the P-value is obtained as 0.661.

To determine

To explain: The conclusion of the performed significance test.

Expert Solution
Check Mark

Answer to Problem 58E

Solution: The data strongly suggests that there is no significant difference between the peak heart rate of the elite players of Canadian National team and a university squad.

Explanation of Solution

The t-test statistic is obtained as -0.45 in the previous part. For 12 degrees of freedom, the P-value is obtained as 0.661 by using Excel in the previous part. This shows that P>0.05. So, the null hypothesis is not rejected. Hence, it can be concluded that the data strongly suggest that there is no significant difference between the peak heart rate of both types of players.

Section 3:

To determine

To test: Significance test to test whether there is difference in intermittent recovery test of Elite players from the Canadian National team and university squad.

Section 3:

Expert Solution
Check Mark

Answer to Problem 58E

Solution: The data strongly suggests that there is a significant difference between the intermittent recovery test of the elite players of Canadian National team and university squad. The t- test statistic is obtained as t=6.35 with Pvalue=0.000 for 12 degrees of freedom.

Explanation of Solution

Calculation: The hypothesis is considered as that there is no difference in intermittent recovery test of elite players and a university squad against the alternative that there is difference in intermittent recovery test of the elite players and university squad. Hence, the hypotheses are formulated as:

H0:μE=μUHa:μEμU

The two-sample t- test statistic is defined as:

t=(x1¯x2¯)(μ1μ2)s12n1+s22n2

Where

x¯1=Mean of the treatment groupx¯2=Mean of the control groups1=Standard deviation of treatment groups2=Standard deviation of control group

n1=Size of treatment groupn2=Size of control groupμ1μ2=Difference of means

The difference of means is considered as 0 points as the null hypothesis states that there is no difference between the two sets of players. Substitute the provided values in the above-defined formula to compute the two sample t-statistic. So,

t=(x1¯x2¯)(μ1μ2)s12n1+s22n2=(1160781)0191216+129213=37959.67=6.35

For the second approximation, the degrees of freedom k is the smaller of n11 and n21.

n11 =161=15

n21 =131=12

So, the degree of freedom is 12. Compare the obtained value of t -statistic with the values in the table D for 12 degrees of freedom. The table D shows that the value of t=6.35 lies beyond the table. Use the formula =TDIST (t, d.f, tails) to determine the exact P- value in Excel software. The screenshot is provided below:

Introduction to the Practice of Statistics, Chapter 7.2, Problem 58E , additional homework tip  2

Therefore, the P-value is obtained as 0.000.

To determine

To explain: The conclusion of the performed significance test.

Expert Solution
Check Mark

Answer to Problem 58E

Solution: The data strongly suggests that there is a significant difference between the intermittent recovery test of the elite players of Canadian National team and university squad.

Explanation of Solution

The t-test statistic is obtained as 6.35 in the previous part. For 12 degrees of freedom, the P-value is obtained as 0.000 by using Excel in the previous part. This shows that P<0.05. So, the null hypothesis is rejected. Hence, it can be concluded that the data strongly suggests that there is a significant difference between the intermittent recovery tests of both the types of players.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In addition to the in-school milk supplement program, the nurse would like to increase the use of daily vitamin supplements for the children by visiting homes and educating about the merits of vitamins. She believes that currently, about 50% of families with school-age children give the children a daily megavitamin. She would like to increase this to 70%. She plans a two-group study, where one group serves as a control and the other group receives her visits. How many families should she expect to visit to have 80% power of detecting this difference? Assume that drop-out rate is 5%.
A recent survey of 400 americans asked whether or not parents do too much for their young adult children. The results of the survey are shown in the data file. a) Construct the frequency and relative frequency distributions. How many respondents felt that parents do too much for their adult children? What proportion of respondents felt that parents do too little for their adult children? b) Construct a pie chart. Summarize the findings
The average number of minutes Americans commute to work is 27.7 minutes (Sterling's Best Places, April 13, 2012). The average commute time in minutes for 48 cities are as follows: Click on the datafile logo to reference the data. DATA file Albuquerque 23.3 Jacksonville 26.2 Phoenix 28.3 Atlanta 28.3 Kansas City 23.4 Pittsburgh 25.0 Austin 24.6 Las Vegas 28.4 Portland 26.4 Baltimore 32.1 Little Rock 20.1 Providence 23.6 Boston 31.7 Los Angeles 32.2 Richmond 23.4 Charlotte 25.8 Louisville 21.4 Sacramento 25.8 Chicago 38.1 Memphis 23.8 Salt Lake City 20.2 Cincinnati 24.9 Miami 30.7 San Antonio 26.1 Cleveland 26.8 Milwaukee 24.8 San Diego 24.8 Columbus 23.4 Minneapolis 23.6 San Francisco 32.6 Dallas 28.5 Nashville 25.3 San Jose 28.5 Denver 28.1 New Orleans 31.7 Seattle 27.3 Detroit 29.3 New York 43.8 St. Louis 26.8 El Paso 24.4 Oklahoma City 22.0 Tucson 24.0 Fresno 23.0 Orlando 27.1 Tulsa 20.1 Indianapolis 24.8 Philadelphia 34.2 Washington, D.C. 32.8 a. What is the mean commute time for…

Chapter 7 Solutions

Introduction to the Practice of Statistics

Ch. 7.1 - Prob. 11UYKCh. 7.1 - Prob. 12UYKCh. 7.1 - Prob. 13UYKCh. 7.1 - Prob. 14ECh. 7.1 - Prob. 15ECh. 7.1 - Prob. 16ECh. 7.1 - Prob. 17ECh. 7.1 - Prob. 18ECh. 7.1 - Prob. 19ECh. 7.1 - Prob. 20ECh. 7.1 - Prob. 21ECh. 7.1 - Prob. 22ECh. 7.1 - Prob. 23ECh. 7.1 - Prob. 24ECh. 7.1 - Prob. 25ECh. 7.1 - Prob. 26ECh. 7.1 - Prob. 27ECh. 7.1 - Prob. 28ECh. 7.1 - Prob. 29ECh. 7.1 - Prob. 30ECh. 7.1 - Prob. 31ECh. 7.1 - Prob. 32ECh. 7.1 - Prob. 33ECh. 7.1 - Prob. 34ECh. 7.1 - Prob. 35ECh. 7.1 - Prob. 36ECh. 7.1 - Prob. 37ECh. 7.1 - Prob. 38ECh. 7.1 - Prob. 39ECh. 7.1 - Prob. 40ECh. 7.1 - Prob. 41ECh. 7.1 - Prob. 42ECh. 7.1 - Prob. 43ECh. 7.1 - Prob. 44ECh. 7.1 - Prob. 45ECh. 7.1 - Prob. 46ECh. 7.1 - Prob. 47ECh. 7.2 - Prob. 48UYKCh. 7.2 - Prob. 49UYKCh. 7.2 - Prob. 50UYKCh. 7.2 - Prob. 51UYKCh. 7.2 - Prob. 52UYKCh. 7.2 - Prob. 53UYKCh. 7.2 - Prob. 54UYKCh. 7.2 - Prob. 55ECh. 7.2 - Prob. 56ECh. 7.2 - Prob. 57ECh. 7.2 - Prob. 58ECh. 7.2 - Prob. 59ECh. 7.2 - Prob. 61ECh. 7.2 - Prob. 62ECh. 7.2 - Prob. 63ECh. 7.2 - Prob. 64ECh. 7.2 - Prob. 65ECh. 7.2 - Prob. 66ECh. 7.2 - Prob. 67ECh. 7.2 - Prob. 68ECh. 7.2 - Prob. 69ECh. 7.2 - Prob. 70ECh. 7.2 - Prob. 71ECh. 7.2 - Prob. 72ECh. 7.2 - Prob. 73ECh. 7.2 - Prob. 74ECh. 7.2 - Prob. 75ECh. 7.2 - Prob. 76ECh. 7.2 - Prob. 77ECh. 7.2 - Prob. 78ECh. 7.2 - Prob. 79ECh. 7.2 - Prob. 80ECh. 7.2 - Prob. 81ECh. 7.2 - Prob. 82ECh. 7.2 - Prob. 83ECh. 7.2 - Prob. 84ECh. 7.2 - Prob. 85ECh. 7.2 - Prob. 86ECh. 7.2 - Prob. 87ECh. 7.2 - Prob. 88ECh. 7.2 - Prob. 89ECh. 7.2 - Prob. 90ECh. 7.2 - Prob. 91ECh. 7.2 - Prob. 92ECh. 7.3 - Prob. 93UYKCh. 7.3 - Prob. 94UYKCh. 7.3 - Prob. 95UYKCh. 7.3 - Prob. 96UYKCh. 7.3 - Prob. 97UYKCh. 7.3 - Prob. 98UYKCh. 7.3 - Prob. 99UYKCh. 7.3 - Prob. 100UYKCh. 7.3 - Prob. 101ECh. 7.3 - Prob. 102ECh. 7.3 - Prob. 103ECh. 7.3 - Prob. 104ECh. 7.3 - Prob. 105ECh. 7.3 - Prob. 106ECh. 7.3 - Prob. 107ECh. 7.3 - Prob. 108ECh. 7.3 - Prob. 109ECh. 7.3 - Prob. 110ECh. 7.3 - Prob. 111ECh. 7.3 - Prob. 112ECh. 7.3 - Prob. 113ECh. 7.3 - Prob. 114ECh. 7.3 - Prob. 115ECh. 7.3 - Prob. 116ECh. 7.3 - Prob. 117ECh. 7.3 - Prob. 118ECh. 7 - Prob. 119ECh. 7 - Prob. 120ECh. 7 - Prob. 121ECh. 7 - Prob. 122ECh. 7 - Prob. 123ECh. 7 - Prob. 124ECh. 7 - Prob. 125ECh. 7 - Prob. 126ECh. 7 - Prob. 127ECh. 7 - Prob. 128ECh. 7 - Prob. 129ECh. 7 - Prob. 130ECh. 7 - Prob. 131ECh. 7 - Prob. 132ECh. 7 - Prob. 133ECh. 7 - Prob. 134ECh. 7 - Prob. 135ECh. 7 - Prob. 136ECh. 7 - Prob. 137ECh. 7 - Prob. 138ECh. 7 - Prob. 139ECh. 7 - Prob. 140ECh. 7 - Prob. 141ECh. 7 - Prob. 142ECh. 7 - Prob. 143ECh. 7 - Prob. 144ECh. 7 - Prob. 145ECh. 7 - Prob. 146ECh. 7 - Prob. 147ECh. 7 - Prob. 148ECh. 7 - Prob. 149E
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY