EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.2, Problem 3E
If the magnetic field phasor of a plane wave traveling in a medium with intrinsic impedance η = 100 Ω is given by
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The magnetic field of a wave
propagating through a certain
nonmagnetic material in the negative
z direction has an amplitude of
45mA/m and a frequency of
10° Hz. If the wave is polarized on
the positive x direction and the
phase velocity of the wave is
10°m/s. Assume the initial phase
is 30°.
Find the wave number.
Select one:
O a. The wave number is: 67
O b. The wave number is: 2T
O c. The wave number is: 2.5
O d. The wave number is: 7.6
Given two different dielectrics, or a dielectric and a conductor, the magnitude of the electric field is smaller in the region of smaller permittivity (unless
8₁-8₂90°, where its magnitude is unchanged).
False
O True
E1
DN1
n
D₂
0₂
0₁
DN2
Dian 2
82
D₁
Dian 1
Homework Help
Chapter 7 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 7.2 - What is a uniform plane wave? Describe its...Ch. 7.2 - Since E and H are governed by wave equations of...Ch. 7.2 - If a TEM wave is traveling in the y direction, can...Ch. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - If the magnetic field phasor of a plane wave...Ch. 7.2 - Repeat Exercise 7-3 for a magnetic field given by...Ch. 7.3 - An elliptically polarized wave is characterized by...Ch. 7.3 - Prob. 5CQCh. 7.3 - The electric field of a plane wave is given by...
Ch. 7.4 - If the electric field phasor of a TEM wave is...Ch. 7.4 - The constitutive parameters of copper are = 0 = 4...Ch. 7.4 - Prob. 8ECh. 7.4 - For a wave traveling in a medium with a skin depth...Ch. 7.5 - Prob. 6CQCh. 7.5 - In a good conductor, does the phase of H lead or...Ch. 7.5 - Prob. 8CQCh. 7.5 - Is a conducting medium dispersive or...Ch. 7.5 - Compare the flow of current through a wire in the...Ch. 7.6 - Convert the following values of the power ratio G...Ch. 7.6 - Find the voltage ratio g corresponding to the...Ch. 7 - The magnetic field of a wave propagating through a...Ch. 7 - Prob. 2PCh. 7 - The electric field phasor of a uniform plane wave...Ch. 7 - The electric field of a plane wave propagating in...Ch. 7 - A wave radiated by a source in air is incident...Ch. 7 - The electric field of a planewave propagating in a...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - A 60 MHz plane wave traveling in the x direction...Ch. 7 - Prob. 9PCh. 7 - For a wave characterized by the electric field...Ch. 7 - Prob. 11PCh. 7 - The magnetic field of a uniform plane wave...Ch. 7 - A linearly polarized plane wave of the form...Ch. 7 - The electric field of an elliptically polarized...Ch. 7 - Compare the polarization states of each of the...Ch. 7 - Plot the locus of E(0, t) for a plane wave with...Ch. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - In a medium characterized by r = 9, r = 1, and =...Ch. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - The skin depth of a certain nonmagnetic conducting...Ch. 7 - Prob. 24PCh. 7 - The electric field of a plane wave propagating in...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - At 2 GHz, the conductivity of meat is on the order...Ch. 7 - In a nonmagnetic, lossy, dielectric medium, a 300...Ch. 7 - A rectangular copper block is 30 cm in height...Ch. 7 - Prob. 30PCh. 7 - The inner and outer conductors of a coaxial cable...Ch. 7 - Prob. 32PCh. 7 - The magnetic field of a plane wave traveling in...Ch. 7 - A wave traveling in a nonmagnetic medium with r =...Ch. 7 - The electric-field phasor of a uniform plane wave...Ch. 7 - Prob. 36PCh. 7 - A wave traveling in a lossless, nonmagnetic medium...Ch. 7 - At microwave frequencies, the power density...Ch. 7 - Consider the imaginary rectangular box shown in...Ch. 7 - Repeat Problem 7.39 for a wave traveling in a...Ch. 7 - Given a wave with E=x E0 cos(t kz): (a) Calculate...Ch. 7 - Prob. 42P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 10 Hz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the wavenumber. Assume the initial phase is 0. Select one: O a. rad/m 12.6 O b. 2 m/sec 12.6 O c. 108 rad/m O d. 108 rad/secarrow_forwardThe plane wave with a frequency of 3 GHz has a relative dielectric constant of 2.5, a loss tangent of 0.05, and travels in a non-magnetic medium. What is the impedance value of the wave? 238 Ohm 377 Ohm 120 Ohm 150 Ohmarrow_forwardA 100 MHz Electromagnetic Wave is propagating in FR4. What is it's velocity? O 3x10^8/C (m/s) where C is the capacitance of FR4 O (300x10^6)/(100x10^6)= 3 m/s O 3x10^8 (m/s) O approximately 1.5x10^8 m/sarrow_forward
- The electric field of a plane wave in a nonmagnetic medium is E = 50 sin (10*t + 2z)a, V/m Find magnetic filed of the plane Harrow_forwardThe magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 1082π1082πHz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the equation of the instantaneous Electric field. Assume the initial phase is 0.arrow_forwardHandwrite and step by step solutionsarrow_forward
- The Subject is Electromagnetic II .arrow_forward6. The graph on the right shows two waves at time t = 0 s, one moving toward the right at 3.5 m/s and the other moving to the left at 3.5 m/s. What will the D (in mm) At t = 0s 3.5 m/s resulting displacement of the combined waves at x = 15 m at time t = 2.0 s? x (in m) + ++ a. What will the resulting displacement of the combined waves (in mm) at x = 15 m at time t = 2.0 s? 10 15 25 -1 -2- 3.5 m/s b. What will the resulting displacement of the combined waves (in mm) at x = 16 m at time t = = 4.0 s? 04 15 21 20arrow_forwardPlane z= 10 m carries charge 20nCim?. The electric field intensity at the origin is (a) 10n a, Vim (b) 18n a. Vim (c) 72n a. V/m (d) 360m a, Vimarrow_forward
- The magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of Hz . If the wave is polarized on the positive z direction 2 and its wavelength is 12.6 meter, select the equation that represents the instantaneous magnetic field. Assume the initial phase is 0. Select one: O a. H(y, t) = 30žcos(10°t – y) 12.6 О Б. Н(у, t) — 30£cos (2т10%t — 12.6у) O c. H(z, t) = 30jcos(10®t – 2) 12.6 O d. H(y, t) = 30žcos(t – 2.10 TY) 12.6 O e. H(y, t) = 30žcos(10°t + y) 12.6arrow_forwardA water droplet of mass 3.00 x 10-12 kg is located in the air near the ground during a stormy day. An atmospheric electric field of magnitude 6.00 x 103 N/C points vertically downward in the vicinity of the water droplet. The droplet remains suspended at rest in the air. What is the electric charge on the droplet?arrow_forwardby The electric field of a wave propagating through a certain nonmagnetic material is given 0 E=10 cos (6.10³.t+8.. 0 ܫܝܢ Find the following: (a) The direction of wave propagation. The phase velocity. (b) (d) (f) V m The relative permittivity of the material. The intrinsic impedance The magnetic field phasor H(z). The instantaneous magnetic field H(z,t).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What Is a Plane Wave? — Lesson 2; Author: EMViso;https://www.youtube.com/watch?v=ES2WFevGM0g;License: Standard Youtube License