EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 22P
To determine
The depth for the amplitude voltage down to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The reflection takes place at a height of 350 km and the maximum density of the ionosphere corresponds to a refractive index of 0.75 at 10 MHz. What will be the range for which the MUF is 12 MHz?
A uniform plane wave has a wavelength of 2 cm in free space and 1 cm in a perfect dielectric. What is tbe relative permittivity of the of the dielectric ?
A plane wave of unknown frequency is normally incident in air upon the surface of a
perfect conductor. Using an electric-field meter, it is determined that the total electric field in the
air medium is always zero when measured at a distance of 2.5m from the conductor surface.
Moreover, no such nulls were observed at distances closer to the conductor. What is the
frequency of the incident wave?
Chapter 7 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 7.2 - What is a uniform plane wave? Describe its...Ch. 7.2 - Since E and H are governed by wave equations of...Ch. 7.2 - If a TEM wave is traveling in the y direction, can...Ch. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - If the magnetic field phasor of a plane wave...Ch. 7.2 - Repeat Exercise 7-3 for a magnetic field given by...Ch. 7.3 - An elliptically polarized wave is characterized by...Ch. 7.3 - Prob. 5CQCh. 7.3 - The electric field of a plane wave is given by...
Ch. 7.4 - If the electric field phasor of a TEM wave is...Ch. 7.4 - The constitutive parameters of copper are = 0 = 4...Ch. 7.4 - Prob. 8ECh. 7.4 - For a wave traveling in a medium with a skin depth...Ch. 7.5 - Prob. 6CQCh. 7.5 - In a good conductor, does the phase of H lead or...Ch. 7.5 - Prob. 8CQCh. 7.5 - Is a conducting medium dispersive or...Ch. 7.5 - Compare the flow of current through a wire in the...Ch. 7.6 - Convert the following values of the power ratio G...Ch. 7.6 - Find the voltage ratio g corresponding to the...Ch. 7 - The magnetic field of a wave propagating through a...Ch. 7 - Prob. 2PCh. 7 - The electric field phasor of a uniform plane wave...Ch. 7 - The electric field of a plane wave propagating in...Ch. 7 - A wave radiated by a source in air is incident...Ch. 7 - The electric field of a planewave propagating in a...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - A 60 MHz plane wave traveling in the x direction...Ch. 7 - Prob. 9PCh. 7 - For a wave characterized by the electric field...Ch. 7 - Prob. 11PCh. 7 - The magnetic field of a uniform plane wave...Ch. 7 - A linearly polarized plane wave of the form...Ch. 7 - The electric field of an elliptically polarized...Ch. 7 - Compare the polarization states of each of the...Ch. 7 - Plot the locus of E(0, t) for a plane wave with...Ch. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - In a medium characterized by r = 9, r = 1, and =...Ch. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - The skin depth of a certain nonmagnetic conducting...Ch. 7 - Prob. 24PCh. 7 - The electric field of a plane wave propagating in...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - At 2 GHz, the conductivity of meat is on the order...Ch. 7 - In a nonmagnetic, lossy, dielectric medium, a 300...Ch. 7 - A rectangular copper block is 30 cm in height...Ch. 7 - Prob. 30PCh. 7 - The inner and outer conductors of a coaxial cable...Ch. 7 - Prob. 32PCh. 7 - The magnetic field of a plane wave traveling in...Ch. 7 - A wave traveling in a nonmagnetic medium with r =...Ch. 7 - The electric-field phasor of a uniform plane wave...Ch. 7 - Prob. 36PCh. 7 - A wave traveling in a lossless, nonmagnetic medium...Ch. 7 - At microwave frequencies, the power density...Ch. 7 - Consider the imaginary rectangular box shown in...Ch. 7 - Repeat Problem 7.39 for a wave traveling in a...Ch. 7 - Given a wave with E=x E0 cos(t kz): (a) Calculate...Ch. 7 - Prob. 42P
Knowledge Booster
Similar questions
- Assume that reflection takes place at a height of 400 km and that the maximum density in the ionosphere corresponds to a 0.9 refractive index at 10 MHz. What will be the range (aşşume earth is flat) for which the MUF is 10 MHz.arrow_forwardAn EM wave travels in free space with the electric field component E, = 100 eKO.866v+0.52) a, V/m Determine w and Aarrow_forwardI'm having some diffculities with E&M. Thanks!arrow_forward
- 1. A 50 MHz uniform plane wave is propagating in a material with relative permeability and relative permittivity as 2.25 and 1 respectively. The material is assumed to be loss less. Find the phase constant of the wave propagation. A TU rad/m rad/m Brad/m D 2π rad/marrow_forwardThe wave has k=47(rad / m) and 7=80x2 at f-100MHZ. Find the relative permittivity and the relative permeability of the medium? Select one: None 8, = 9, µ, = 3 E, = 27, u, = 3 E, =9, H, = 4 E, = 27, 4, = 4arrow_forwardThis question is about Wave propagation and I want to answer in 20 minutesarrow_forward
- A plane electromagnetic wave having a frequency of 40 MHz is traveling through a medium with relative permittivity of 4 and relative permeability of 5. Find out the phase velocity of the wave along with the wavelength.arrow_forwardi need the answer quicklyarrow_forwardI need to solve a question within 15 minutes as quickly as possiblearrow_forward
- A plane wave is normally incident from medium 1 ( 81, 41, Š1 ) to medium 2 (82, H2, Š2). Write down the expression for the E- field reflection and transmission coefficients. Calculate the amplitude reflection coefficient from air (µ = µ0 = 4x 10" H/m , &a = 8.85 x 10 -12 F/m) to glass ( u = 40 = 47 10-7 H/m , ɛg = 1.99 x 10 -11 F/m ). For a 1 mW laser power normally incident from air onto a glass surface , calculate how much power would be transmitted into the glass? (assume that the material parameters at the laser frequency are the values given here). If a quarter wave layer is applied onto the glass surface, what should be the value of its č and e in order to reduce the reflection coefficient to zero?arrow_forwardThe electric field amplitude of a uniform plane wave propagating in the az, direction is 250V/m. IF E = Exay and w = 1.0Mrad/s, find the;a. Frequencyb. period andc. amplitude of magnetic field intensity H.μo= 1.2566 x 10^-6 H/m; εo = 8.854 x 10^-12 F/marrow_forwardThe electric field component of a y-polarized plane wave is given as Ey(z)=Aexp(-az-jßz). This wave propagates with a frequency of 831MHZ in a homogeneous, linear medium with a relative magnetic permeability of 1, a relative dielectric permeability of 3.3 and a conductivity of 2.8. If the electric field amplitude is 90V in the z=0 plane, what happens at the z=1cm distance?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,